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FOREWORD

This renort presents results of the expansion and improvement of the
FORMA system for response and load analysis. The acronym FORMA stands
for FORTRAN Matrix Analysis. The study, performed from 16 May 1975
through 17 May 1976 was conducted by the Analytical Mechanics Department,
Martin Marietta Corporation, Denver Division, under the contract NAS8-
31376. The program was administered by the National Aeronautics and
Space Administration, George C. Marshall Space Flight Center, Huntsville,
Alabama under the direction of Dr. John R. Admire, Structural Dynamics
Division, Systems Dynamics Laboratory.

This report is published in seven volumes:

Volume 1 - Programming Manual,

Volume IIA - Listings, Dense FORMA Subroutines,

Volume IIB - Listings, Sparse FORMA Subroutines,

Volume 1IC - Listings, Finite Element FORMA Subroutines,
Volume IIIA - Explanations, Dense FORMA Subroutines,

Volume XIIIB - Explanations, Sparse FORMA Subroutines, and
Volume IIIC - Explanations, Finite Element FORMA Subroutines.



iii

CONTENTS

Foreword . « . . .« . . ¢ ¢ v v i v 0. e
Contents . + ¢ & ¢ ¢ ¢« ¢ ¢ 4 4 s 44 4 e e e
Abstract . . . ¢ ¢« . ¢t 4 i i e h h e e e e
Acknowledgements . . . . . . . . ¢ 4 4 . 0 0. .
List of Symbols . . . . . . . . ¢ . . . . ..

I. Introduction .« ¢ ¢« ¢ ¢ ¢ « ¢ & < 4 4 . .

I1. Subroutine Explanations (Subroutine Names i

Alphabetical Order, Numbers Coming Before
Letters) . - & ¢ ¢ 4 e 4 e 4 e 4 e e .

II-1



iv

A3STRACT

This report presents techniques for the solution of structural
dynamic systems on an electronic digital computer using FORMA (FORTRAN
Matrix Analysis).

FORMA is a library of subroutines coded in FORTRAN IV for the effi-
cient solution of structural dynamics problems. These subroutines are
ir the form of building blocks that can be put together to solve a large
variety of structural dynamics problems. The obvious advantage of the
building block approach is that programming and checkout time are limi-
ted to that required for putting the blocks together in the proper order.

The FORMA method has advantageous features such as:

1. subroutines in the library have been used extensively for many
years and as a result are well checked out and debugged;

N

method will work on any computer with a FORTRAN IV compiler;
3. incorporation of new subroutines is no problem;

4. basic FORTRAN statements may be used to give extreme flexi-
bility in writing a program.

Two programming technique”s are used in FORMA: dense and sparse.
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LIST OF SYMBOLS

matrix

column matrix
; vector

row matrix

transpose (when symbol is a superscript)

m designates the row size of matrix

n designates the column size of matrix
a designates an element of matrix [A]
i designates the ith row of matrix [A]

j designates the jth column of matrix {A]



I. INTRODUCTION

This volume presents an explanation of the function of each dense
subroutine in the FORMA library. Example problems are given in some
cases to clarify the operations performed by a subroutine.



1I-1

II. SUBROUTINE EXPLANATIONS

The subroutines are given in alphabetical order with numbers
coming before letters.



Subroutine AABB calculates the summation of two matrices,
each matrix multiplied by a scalar. In matrix notation,

= «fA] + 8[B]

[Z]NRxNC NRxNC NRxNC

where

= i
235 = * 335 B Byy (j

6 n
—

%
~—

NR is the number of rows of each matrix, and
NC is the number of columns of each matrix.

The number of rows of [A] and [B] must be equal, and the number
of columns of [A] and [B] must be equal.

. Theorem: Matrix summation is commutative.

| That is, [C] + [D] = [D] + [C].

Theorem: Matrix summation is associative.
That is, [C] + ([D] + [E]) = ([C] + [D]) + [E],

EXAMPLE

Consider input of a = 5., B = 2.,
7¢ 2. -'3- 70 -80 9-
[A] = ' » and [B] = '
23 |4, 5. 6. 23 110, 11. 12.

The reader can easily verify the output to be

70 20 -3- 7- "'80 9-
(2], = 5. - 2.
23 4. 5. 6. 10. 11. 12.
210 26l —33n

0. 3. 6.

AABB
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Subroutine ALODl takes (on option) distributed and concentrate.
lateral forces on a beam and replaces them with representative
concentrated forces at select¢d points on the beam.

The x~stations of the selected points (panel points) are given
in {PP}. These x-stations must be in increasing order.

The distributed lateral force, f(x), is assumed to be piece-

wise linear and is represented by straight line segments as shown
in Figure 1. : ’

f(x)

-

Figure 1 Distributed Lata2ral Force

The x-stations of the end points for the line segments giving the
distributed lateral force are independent of the panel point
x-stations. However, the distributed lateral force must be within
the panel point limits. The line segments reprecenting the dis-
tributed lateral force¢ may or may not be joined and ma. overlap.
The distributeu later=al force is definmed in [DIST). Each row cf
[DIST] represents one nonvertical line segment. The form of each
row of [DIST] is [x; x, £, f,] where x;, f, give the first end
point, and x,, f, give the second end point of a line segment.

The concentrated lateral forces are defined in [CONC}. Each
row of [CONC] contains one concentrated lateral force, Fc, and
its x location in the form[? F ].

_ c ¢
may be ouiside the panel point limits.

A concentrated lateral force

The calculated representative concentrated forces at the
selected panel points are placed in {Z}., The total lateral force
and center of pressure are also calculated and printed.
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DESCRIPTION OF TECHNIQUE

The replacement of distributed and concentrated lateral forces
by representative concentrated forces at selected panel points is
obtained using a virtual work approach. The virtual work done by
the lateral forces on a beam is defined by

*g

W = fix) Sy(x) dx + ZFC Sy (xc) 1

X [

where

f(x) is the distributed lateral force,
F 1is a concentrated lateral force,
§y(x) is the lateral virtual displacement measured from
the hody x-axis,
x is the undeformed iongitudinal axis of the beam,

Xy is the starting x-station of the beam, and
Xp is the ending x-station of the beam:.

The finite summation is over the number of concentrated lateral
forces, Fc'

Most techniques for. describing the lateral displacement
(virtual or real) assume a function, y(x), over the entire length
of the beam. However, considerable skill is required in choosing
this function. The technique used here 1s to represent the lat-
eral displacement between consecutive panel points by some simple
function of the panel point displacements. A linear displacemert
function will be assumed here. This is illustrated in Figure Z
where X and X, 4 are consecutive panel point stations. The

region between panel points k and k+l is referred to as bay k.
y (x)
Vieti ktl
k
Yk
| i
X M+l

Figure 2 Linear Displacement Function

X
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The displacement between panel points k and k+l is given by

YOO =y {7 X)) i V)M T R

Similarly

Sy () = by + (% ) (W ), ™ %) @

The virtual work of distributed and concentrated forces will
be considered separately. The distributed lateral force, f(x), is
considered first. The geometry for a line segment of distrib-
uted force is shown in Figure 3.

£(x)
2
fo- »
1
iV
| |
X1 X2 x

Figure 3 Line Segment Geometry
1i.¢ equation for a straight line segment as showr in Figure 3 is
f(x) = £ + (x - x1) (fz - f})/(Xg - X]). (3)
Substituting Equations (2) and (3) into (1) gives the virtual
work of the distributed lateral force represented by one line
segment, i, in bay k as
. X
q
AW = f +(x - x f -1 X - x
i,k l p p) (fq p)//( q p)]x
x

P

{éyk + (x " %) (éyk+1 - 6yk)//ka+1 - xk)]dx~ (4)
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The subscripts p and q have been introduced to handle the possi-
bility of a line segment extending past the bav limits. Thus,

X is
P

Similarly, fp is either f; or fk' and fq is either f, or fk+

the greater of x; or x, and xq is the lesser of x- or x

k k+1°

1

The int¢gratior is continued for the line segment in adjacent

bays,

if necessary, until the entire lin~ segment Las been used.

Performing the integration of Egquation (4) yields

where

N
[

N
1l

{-.
"

L,
K

. RO
Qdi,k = [Zk zk+1] 5 (5)

L (fp {3 (xk+l - xp) - Lp} + £ {3 (xk+1 - xp) - ZLP})/MT » (5a)
Ly (£ {3 (%o = %) + Lp} £ {3 (%o~ %) * 2'-,,})/6’1- . (5b)

X - x , and Sc
a pe 30 (5¢)

TS (5d)

By definition, the coefficient of virtual displacement is the

force.

Thus, z, and Z 41 3re the representative concentrated

forces at panel points k and k+l replacing the distributed lateral

force

represented by one line segment i in bay k.

The concentrated lateral forces are considered last. For a
force located in bay k, the displacement at the force location,
6y(xc), is given in terms of adjacent panel point displacements

Sy(xk) and éy(xk+1). Thus, from Equations (2) and (1) the virtual

work of one concentrated force, FC, in bay k is given as

AW = [z 2z ~6yk (6)
¢,k [ k k+1] 6yk+1
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where

N
|

k- Fe (xk+1 - xc)/("kﬂ - "k) (6a)

and

- % - . b
2 = Fe (% 7 %) /(e T ) (6b)
The virtual displacement coefficients, z, and Z 41> are the repre-

sentative concentrated forces at panel points k and k+l to replace
the concentrated lateral force, Fc’ in onay k.

The representative concentrated panel point forces for the
entire beam are finally cobtained by evaluating Equatiomns (5) for
each line segment of distributed force and Equations (6) for each
concentrated force. Like terms of z are then summed.

It is interesting to note that the virtual work approach with
assumed linear displacement between consecutive panel points used
here, gives identical results to the more common static “beaming-
out" approach.

The total lateral force and center of pressure for the beam

are calculated by using rigid body translation and rotation modes
in the following matrix product.

T ! _ °
{2} [}1} ; {PP}] = [%T PT]

{1} is a column of ones,

where

{PP} is a column of the panel point x stations,

{Z} is a column of the concentrated panel point forces,

FT = total force on the beam, and
P; = total moment of forces on the beam about x = 0.

From this data the center of pressure of the forces is calculated
from

)
xCp = PT//FT'
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EXAMPLE

Consider a beam with distributed and concentrated lateral
forces as shown in the sketch.

f(x) (1b/in.)

20
1 30 1b
1 o
.- -» —— —®
| S T T I S B A I O N I D x (in.)

The panel points are denoted by the points numbered 1 thru 5.
The panel point x-stations and the force data are defired inm:

[DIST] = |15. 30. 5. 20.] and {CONC] = [70. 30.],
45. 55. 10. 10.

{PP} =

Using the technique described previously and Equations (5) and
(6), the reader can verify the following results.



For row 1 of [DIST]:

Bay 1: z; = 27.80 1b
z, = ~2.20 1b
Bay 2: =z, = 76.07 1b
z3 = 11.43 1b.

For row 2 of [DIST]:
Bay 3: z3 = 75.00 1b

25.00 1b.

Zy
For row 1 of [CONC]:

20.00 1b

Bay 4: 2z

Zg 10.00 1b.

The final forces at the selected panel points {PP} to replace
distributed forces defined by [DIST] and concentrated forces de-
fined by [CONC] are given by the sum of the above results as

{Z} = } 27.80
148.27
86.43
45.02
1v.00

ALOD1-~7/7
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Subroutine ALOD2 takes (on option) distributed and concen-
trated axial forces on a beam and replaces them with representa-
tive concentrated forces at selected points on the beam.

The x-stations of the selected points (panel points) are
given in {PP!. These x-stations must be in increasing order.

The distributed axial force, f(x), is assumed to be piece-
wise linear and is represented by straight line segments as shown

in Figure 1.

£(x)

-

Figure 1 Distributed Axial Force

The x-stations of the end points for the line segments giv-
ing !%e distributed axial force are independent of the panel
pc’ t x-stations. However, the distributed axial force must be
within the panel point limits. The line segments representing
the disrributed axial force may or may not be joined and may
overlap. The distributed axial force is defined in [DIST]. Each
row of [DIST] represents one nonvertical line segment. The form
o. each row of [DIST] is [x; x; f; f,] where xj, £ give the first
end point and x;, f, give the second end point of a line segment.

The concentrated axial forces are defined in [CONC]. Each
row of [CONC] contains one concentrated axial force, Fc, and its
x location ir the form X, fc . A concentrated axial force may
be outside the panel point limits.

The calculated representative concentrated forces at the

szlected panel points are placed in {Z}. The total axial force
is also calculated and printed.
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DESC”IPTION OF TECHNIQUE

The replacement of distributed and concentrated axial forces
by representative concentrated forces at selected panel points
is obtained using a virtual work approach as follows.

The virtual work done by the axial forces on a beam is de-
fined by

% _
sW = : f(x) Sg(x) dx + Z Fc 6g(xc) 1)
Xg c
where
f(x) is the distributed axial force,
F 1is a concentrated axial force,
8§g(x) is the axial virtual displacement,
x is the longitudinal axis of the beam,
Xg is the starting x-station of the beam, and
X

E is the ending x-station of the beam.

The finite summation is over the number of concentrated axial
forces, Fc.

Most techniques for describing the «xial displacemernt (vir-
tual or real) assume a function, g(x), cver the entire length of
the beam. However, considerable skill is required ir choosing
this function. The technique used here is to represent the
axial displacement between consecutive panel points by some simple
function of the panel point displacement. A uniform displacement
function will be assumed here. The displacement between consecu-
tive panel points k and k+l is assumed equal to the displacement
ot pancl point k+l. That is,

80 = 8(%y1) = B
Similarly

6g(x) = 4g (xk+1) = 6gk+1' (2)
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The region between panel points k and k+l is referred to as bay
k.

The virtual work of distributed and concentrated forces will
"be considered separately. The distributed axial force, f(x), is
considered first. The geometry for a line segment of distributed
force is shown in Figure 2.

£(x)

fz—

fir
1 J x
X1 Xz

Figurc 2 Line Segment Geometry
The equation for a straight line segment as showr in Figure 3 is
f(x) = f, + (x - X]) (fz - fl)/(XQ - X]). )

Substituting Equations (2) and (3) into (1) gives the virtual
work of the distributed axial force represented by one line seg-~
ment 1 in bay k as

X
q

awi’k = (fp + (x - xp) (fq - fp)//ixq - xp)) égk+l dx. 4)

X
P

The subscripts p and g have been introduced to handle the possi-
bility of a line segment extending past the bay limits. Thus,

x_1is the greater of x; or x;, and x_is the lesser of x, or x ..
P k q 2 k+1

Similarly, fp is either f; or £, and fq is eitker f; or f

k k+1”
The integration is continued for the line segment in adjacent
bays, if necessary, until the entire line segment has been used.
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Performing the integration of Equation (4) yields

Wi k= Zeal %Bial )
where
z =kif +f X - x . 5a)
k+l ’( p ¥ fq) ( a ") (
By definition, the coefficient of the virtual displacement is the
force. Thus, Zi is the representative concentrated force at
panel point k+l to replace the distributed axial force represented
by one line segment i in bay k.
The concentrated axial forces are considered last. For a
force located in bay k, the displacement at the force location
is given by Equation (2) as
58 xc) = S5y
From Equation (1), the virtual work of one concentrated force,
Fc, in bay k is given as
= r
Wk T A OB 8)
where 24 = Fc. (6a)

The virtual displacement coefficient, Zpa1? is the representative

concentrated force at panel point k+l to replace the concentrated
axial force, Fc, in bay k.

The representative concentrated panel point forces for the
entire beam are finally obtained by evaluating Equation (5a) for
each line segment of distributed force and Equation (6a) for each
concentrated force. Like terms, z, , are then summed.

It is interesting to note that the virtual work approach used
here, with displacement in bay k assumed uniform and equal to the
displacement at panel point k+l, gives identical results to the
more common procedure of placing all forces in bay k at panel
point k+l.

The total axial force ls calculated by summing the elements
of {2}.
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EXAMPLE

Consider a beam with distributed and concentrated axial forces
as shown in the sketch.

f(x) (1b/in.)

20
1 30 1b
10
5 *~——o
1 2 3 A 5
0 > °- —e— —e- ¢
U N N DN U U (O T T A O I | ] x (in.)

0 10 20 30 40 50 60 70 80

The panel points are denoted by the points numbered 1 thru 5.
The panel point x-stations and the force data are defined in:

{pp} = [10.] [p13T) = llS. 30. 5. zo.] and [CONC] = [70. 30.].
25. 45. 55. 5. 5.
45,
65.

80.

Using the technique described previously and Equations (5a)
and (6a), the reader can verify the following results.

For row 1 of [DIST]:

100.0 1b

Bay 1: =z,

Bay 2: z; = 87.5 1b.
For row 2 of [DIST]:

Bay 3: =z, = 50 1b.
For row 1 of [CONC]:

Bay 4: 2z = 30.0 1b.

f,
J
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The final forces at the selected points {PP} to replace distributed
forces defined by [DIST] and concentrated forces defined by [CONC]
are given by the sum of the above results as

{z} = 0.



Subroutine ALPHAA calculates the multiplication of a matrix
by a scalar. In matrix notation,

(2] gpanc = “1A)yrenc
where
z =ua i=1, NK
ij ij j=1, NC
NR is the number of rows of each matrix, and
NC is the number of columns of each matrix.
EXAMPLE

Consider input of u = 2. and

7- 2- ""3-
(Al, . =
23 14, 5. 6.

7- 20 _31

(21, . = 2.
23 4. 5. 6.
14. 4. -6,

ALPHAA
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Subroutine ASSEM places (assembles) a matrix [A] into a sec-
ond matrix [2] starting at a designated row, column location
(IRZ, JCZ, respectively) in [4]. The elements of [A] will replace
corresponding elements in the original {Z]. Before the first use
of this subroutine in forming [Z], it is important that [Z] is
correctly defined. For example, if [Z] is to be originally all
zeros, Subroutine ZERO could be used. This subroutine may be
called repeatedly to form [Z] from the assembly of several [A]
matrices. The [A] matrix must be within the row, column limits -
of [Z]. In subscript notation,

o %
now

1, NRA
1, NCA

%43 T % (
where
i =k +IRZ-~1
j=5+JCZ -1
NRA is the number of rows of [A];
NCA is the number of columns of [A].

EXAMPLE

Consider a matrix defined as

[Z]3x4 = 0. 0.
0. 0. 0. O.

3. 4. 5.
Matrix [A] = i3 to be assembled into (2] start-
2x3 6 7 8
ing at the 2,1 location (IRZ = 2, JCZ = 1) of [Z].

The result of this operation will be
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Subroutine ATXBAl calculates a special matrix product. In matrix
notation,

B)

~ T
[Z)ycaxnce = CYA1 Dycpxnre [Blyrpxncs

where [Z] is calculated as symmetric and placed in the same core
locations as [A] to allow larger matrix sizes. NRB is the number
of rows of [B], columns of [A]T. NCB is the number of couiumns

of [B], rows of [A]T, and size of [Z].

In scalar summation notation,

NRB T NRB (i -1, NCB)
zij = E (a )ik bkj = E a bkj j = I, NCB
k=1 k=1

DESCRIPTION OF TECHNIQUE

To reduce computer time and accomplish the matrix product using
only two matrix core spaces, an intermediate work space vector

is used. The size of this work vector determines the maximum
number of columns of [B], i.e., NCB. The matrix multiplication

is accomplished as follows. A single row of [A]T (columns of [A])
is multiplied times the columns of [B]. These results are storei
in the work vector until all the columns of [B] have been used.
Because [Z] will be symmetric, columns of [B] less than the row of [A]T
need not be used. The elements in the work vector then replace the
row of [A]T (column of [A])) used in the multiplication. This
procedure is repeated for all rows of [A])T (columns of [A]) to
calculate the lower half of the answer [Z]. The lower half is then
reflected to the upper half to give the final result.
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Subroutine ATXBB calculates a special matrix product. In matrix
notation,

T r
(Zlgrarxnce = (A1 ) yrarsarre “Bluraencs

where [2] is placed in the same core locations as [B] to allow
larger matris sizes; NRAT is “e number of rows of [A]T and [Z]);
NRB is the number of rows of [B] and columns of [A]T; NCB is the
number of columns of [B] and [Z].

In scalar _ummation notation

NRP T NRB (i - l, NRAT)
zij = E‘ (a )ik bkj = E aki bkj J =1, NCB
k=1 k=1

DESCRIPTION OF TECHNIQUE

To reduce computer time and accomplish the matrix product using
only two matrix core spaces, an intermediate work space vector
is used. The size of this work vector determines the maximum

number of rows of [A]T, i.e., NRAT. The matrix multiplication is

accomplished as follows. The rows of [A]T (columns of [A]) are
multiplied times a single column of [B]. These results are stored

in the work vector until all the rows of [A]T have been used. e
elements in the work vector then replace the column of [B] used in
the multiplication. This procedure is repeated for all columns

of [B) to calculate the result [Z].
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Subroutine ATXBBl calculates a special matrix product. In
matrix nétation,

= (1a1h

[ZINRBXNCB NRB=xNRB [B]NRBXNCB

where

(Al

a square, upper triangular matrix;

[Z]) = placed in the same core locations as [B] to allow larger
m rix sizes;

NRB = the number of rows of [B) and [Z] and size of [A];

NCB = the number of columns of {B] and [Z].

In scalar summation aotation

NRB T NRB (1 =1, NRB)
zij = E (a )ik bkj = E aki bkj j =1, NCB
=] =1

DESCRIPTION OF TECHNIQUE

To reduce computer time and accomplish the matrix product using
only two matrix ccore spaces, an intermediate work space vector
is used. The size of this work vector determines the maximum
NRB. The matrix multiplication is accomplished as follows. The

rows of [A]T (columns of [A]) up to the diagonal are multiplied
times a single column of [B{. These results are stored in the

work vector uantil all the rows of [A]T have been used. The ele-
ments in the work vector then replace the column of [B] used in

the multiplication. This procedure is repeated for all columns

of [B] to calculate the result [Z].



ATXBB2
Subroutine ATXBB2 calculates a special matrix product. In

matrix notation,

(z] = (A1) g ngs (B
NCBxNCB NCBxNRR NRBxNCB

where

[A[ = rectangular matrix;

{B] = rectangular matrix;

[2] = square, symmetric matrix;

NRB = number of rows of [B] and [A];

number of columns of {[B] and [A]. Number of rows and
columns of [Z}.

NCB

The result, [Z], is formed in the same core location as [B].

The algorithm for the elements of the matrix product, [Z}], is

NRB NRB

- - T _ i =1, NCB

S I Z (A Pry = E 21 Puy (j =1, NCB)
k=1 k=1

DESCRIPTION OF TECHNIQUE

This subroutine is intended to be used as the second multiplication
of a triple matrix product

(z] = (a7 [c) (Al

and matrix [B] represents the product of [C] and [A]

(B8] = [C] [a].

Matrix [C] is assumed to be symmetric and it follows, therefore,
that [2] is also symmetric. The upper half of [Z] is calculated
and reflected to form the lower half. The result, [Z], is placed
in the [B] core locations.



Subroutine AXBAl calculates a special matrix product.
notation,

[Z)ypasnca = IAlyraxnca [Blycaxnca

where
(a] =
{B] =
[z] =

NRA =

The result, [Z]), is formed in the same core locations

rectangular matrix;

upper triangular, squ re matrix;
rectangular matrix;

number of rows of [A] and [Z];

number ¢f columns of [A} and [Z];
number of rows and columns of [B].

In matrix

as [A].

The algorithm for the elements of the matrix product, [Z], 1is

AXBAl
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Subroutine AXBA2 calculates a special matrix product. in matrix
notation,

(Zlyy = (Al Blyay

where

[A] = square matrix;

[{B] = upper triangular, square matrix;

[2Z] = symmetric, square matrix;

N = number of rows and columns in [A], [B], and [2].

The result, [Z], is formed in the same core locations as [A].
The algorithm for the elements of the matrix product, {[Z], is

i

i=1, N
253 " 21 " E 2k iy (3 -1, N)
k=1



Subroutine AXBA3 calculates a special matrix product.
notation,

(Z)yrexnce = [Alnre~nrB

where
(Al =
(8] =
2] =

NRB =

NCB =

[B]NRBXNCB

upper triangular, square marrix;
rectangular matrix;
rectangular matrix;

number of rows of [B]} and [Z],
number of rows and columns of {A};

number of columns of [B] and [Z].

The result, [Z]), is formed in the same core locations

The algorithm for the elements of the matrix product,

z =

ij

NRB

a b i=1,NRB)
Z 1k "kj j = 1, NCB

k=i

In matrix

as [A}.

(z], is

AXBA3
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Subroutine BABT calculates a special form of the triple matrix
product. In matrix notation,

.
(2] ppaen = (Bl ampanes (Alyennce B ncaxars
where
NCB NCB
N (i = 1, NRB
233 © ZZ Dig 3ok Pix 3 =1, NRB
2=1 k=1

fA) = square, non-symmetric matrix.

B = rectangular matrix.

(z) = square, non-symmetric matrix.

NRB = number of rows of [B] and size of (2.

NCB = number of columms of [B) and size of (A).

Theorem: I1f [A] is symmetric (thac is, [A] = [A]T) then [Z] is
svmmetric.

T

T
Proof: [Z] ([B] (A] [B]T)

ok
(t81*) 1a1?® ()T

i

(8] 1a) (g1t

= [z],

Therefore, if [A] is non-symmetric, (z) is non-symmetric.

DESCRIPTION OF TECHNIQUE

To reduce computer time, an intermediate work space vector is
used in the subroutine. The size of this work vector determines
tne limitation on the number of columns of |B] and thus the size
of [A] (i.e., NCB). Thls special triple matrix product Is accom-
plished as follows. The ruws of [A] are multiplifed times a

"

column of [B) . These regults are stored in the work vector.
Next, the rows nf [B] multiply the work vector to obtain a column
of the answer [Z]. This procedure is reported for all the columns



BABT --2/2

of [_B]'r to give the answer (2} .

EXAMPLE
Consider input of
13.  1l4. 7. 10.
(a) 252 = s 6 and [B) 2 = |78 1L
: : 9. 12,

The reader can easily verify the output to be

[Z]3x3 = | 4267. 910. 5255.

1067. 216. 1317.

5259. 1122.  6489.].
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Subroutine BABTA calculates a special form of the triple matvix
product. This subroutine is a modification of Subroutine BABT to al-
low larger matrix sizes by placing the answer (2} in the same core
locations as {A] . In matrix notation,

I
[Z}NRBXNRB B [B]NRBxNCB [MNCBxNCB [B]NCBxNRB

where

NCB NCB

~ b b (i =1, NRB)
233 E:E: i ek "k j = 1, NRB

k=1 k=1

(a)

square, non-symmetric matrix.

(B] = rectangular matrix.
(2) = square, non-symmetric matrix,

NRB = number of rows of (B} and size of (Z].

NCB = number of columns of (B} and size of [A).

Theorem: 1f [A] is symmetric (that is, [A] = [A]T), then [Z] is
symaetric.

o I

(181 1a] (8%
™y ot o.oT
(i21") (a1t (B

T

1]

Proof: [Z]

(8] (a] (8]
= [2),
Therefore, if [A] is non-symmetric, [Z] is non-symmetric.

DESCRIPTION OF TECHNIQUE

To reduce computer time and to accomplish the special triple matrix
product using only two matrix core spaces, an intermediate work space
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vector is used in the subroutine. The size of this work vector deter-
mines the limitation on the number of columns of [B) (i.e., NCB). The
special triple matrix product is accomplished as follows. A row of [A)
is placed in the work vector which is multiplied times the columns of
B] . These results then replace the row of Uﬂ used in the multipli-
cation. This procedure is rcpeated for all rows of Dﬂ to obtain EABT].
Next, a column of [ABT] is placed in the work vector which is multiplied
by the rows of (B] to give a column of the answer {2) . This last pro-
cedure is repcated for all columns of [ABT) to give the answer [Z]

EXAMPLE

Consider input of

13. 14 7. 10.
@, = s 1 and ﬂﬂ3x2 = }-8. 11.
: : 9. 12,

The reader can easily verify the output to be

4267. 910.  5265.
2 ax3 = | 1067. 216. 1317.
5259. 1122.  6489.

L d
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Subroutine BTAB calculates a special triple matrix product. In

matrix notation,

T
(Zlncaxnce = [BIncexvre (Mauxvrs [BIneexncs
where
NRB NRB
) Z e b i =1, NCB )
235~ 2: gi Yok ki j =1, NCB
2=1 k=1
(A} = square, non-symmetric matrix.
(B) = rectangular matrix
{zZ) = square, non-symmetric matrix
NRB = number of rows of [B) and size of [A) .
NCB = number of columns of {B] and size of (2] .
Theorem: If [A] is symmetric (that is, [A] = [A]T), then [Z] is
symmetric.
. T
: T
Proof: (2T = (181" (4] (21)

T
81" a)" (1817)
(81T (A] (B

{z].

Therefore, if (A] is non-symmetric, [Z] is non-symmetric.

DESCRIPTION OF TECHNIQUE

To reduce computer time, an intermediate work space vector is

used in the subroutine.

The size of this work vector determines the

limitation on the number of rows of (B] and thus the size of [(A] (i.e.,

NRB) .

The triple matrix product is accomplished as follows.
of [A) are multiplied times a column of [B) .

The rows
These results are stored
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in the work vector. Next, the rows of (B)T (columns of (B)) mulciply
the work vector to obtain a column of the answer (2] . This procedure
is repeated for all the columns of (B} to give the answer [Z)

%,

EXAMPLE

Consider input of

13. 14. 7. -8. 9.
(Alyis =115, 16.] 2 [Blyus = fy0. 11. 12.].

The reader can easily verify the output to be
[Z]3><3 = | 4267. 910. 5265.
1067. 216. 1317.

5259. 1122. 6489.1.
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Subroutine BTABA calculates a special triple matrix product. This

subroutine is a modification of Subroutine BTAB to allow larger matrix

sizes by placing the answer (2] in the same core locations as !A). In
matrix notation,
2] = (8], (4] (1]
NCBxNCB NCUIxNRB NRExNRB NRBxNCB
where
NRB NRB
i =1, NCB
%3 ZZ b.i %ik iy (j =1, .\'ca)
k=1 k=1

(A) = square, non-symmetric matrix.

[BJ = rectangular matrix,
(z) = square, non-symmetric matrix.
NRB = number of rows of (B} and size of [A] .

NCB = number of columns of [B) and size of [2] .

Theorem: If [A] is symmetric (that is, [A] = [A]rJ, then (2] is
symmetric.

T

Proof: 21" = (181" 1a) (8))

z]

[}

- 81% (At ((;)?)

w81% 1A) (B)

{z]).

Therefore, if [A) is non-symmetric, (z) is non-symmetric.

DESCRIPTION OF TECHNIQUE

To reduce computer time and to accomplish the triple matrix product
using only two matrix core spaces, an intermediate work space vector is
used in the subroutine. The size of this work vector determines the

\



BTABA 2/2

limatation on the number of rows and columns of (B} (i.e., NRB and NCB).
The triple matrix product is accomplished as follows. A row of CA? is
placed in the work vector which is multiplied tim.s> the columns of (B,
These results then replace the row of [A] used in the multiplication.
This procedure is repcated for all rows of [A] to obtain (AB, . Next
the rows of [B]T (columns of [B)) are multiplied times a single column
of (AB) just formed. These results are stored in the work vector until
all the rows of [B)T have been used. The elements in the work vector
then replace the coiumn of [A@ used in the multiplication. This pro-
cedure is repeated for all columns of [AB] to give the answer (2. .

LXAJIPLE
Consider input of
13. 14. 7. -8. 9.

), ., = and (B), , =
22 115, 1e. 3 V10, 11. 12.4.

The reader can easily verify the output to be
[lexj = | 4267. 910. 5265.
1067. 216. 1317.

5259. 1122. 6489.).
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Subroutine BTABA2 calculates a special tripla matrix product. In
matrix notation,

T

[z} NN

nxy = [B] (Al Blyxy

where
(a]
(8]
(2]

square, symmetric matrix;

square, upper triangular matrix;

square, symmetric matrix. This answer is placed in the
same core locations as {A] to allow larger sizes;

N = gize of each matrix.

Theorem: T1f [A] 13 symmetric (that is, [A] = [A]T), then [Z] is
syametric.

Proof:

z)t = 31" 141 8T

= )"

= (87 [A] [B]

T
ERCIR

= [z].

DESCRIPTION OF TECHNIQUE

To redune computer time and accomplish the triple matrix product
using only twp matrix core spaces, an intermediate work space
vector is used. The size of this work vector determines the
maximum matrix size, i.e., N. The triple matrix product is
accomplished as follows. A single row of [A] is placed in the
work vector and is multiplied times tke columns of [k]. These
results then replace the row of [A] used in the multiplication.
This procedure is repeated for all the rows of [A]. Use is made

of the upper triangular form of [B]. Next, the rows of [B]T
(columns of [B]) are multiplied times a single column of [AB]
just formed. These results are stored in the work vector until

all of the rows of {B]T have been used. Again use is made of the
upper triangular form of [B]. The elements in the work vector
ther replace the cclumn of [AB] used in the multiplication, down
to the diagonal and the corresponding row out to the diagonal.
This procedure is repeated for all columns and corresponding rows
of [AB] to give the answer [Z].
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Examrle:

Consider input of

|-13 . la. 7. -8 _l

A = and [B]
2x2 |26 16. 22 0. 11._|.

The reader can easily verify the result to be

637. 350.
iz1,,, =
2x2 350. 304.
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Subroutine COLMLT evaluates a special matrix operation by mul-
tiplying each column of a matrix [B] by a scalar. That is,

(z] v alibl} ay_lbz}, ces @ {b }
NRxNC NRx1 NRx1 NC) NC NRx1

where

s =a b i=1, ®
ij % Cij j=1, N

{bj} denotes column j of {B]. Each scalar aj is an element of
the input vector {AVEC}. NR is the number of rows in [B] and
[Z], and XC is the number of columns in [B)] and [Z] and the size
of {AVEC}. The number of elements of {AVEC! must be equal to the
number of solumns of {B].

EXAMPLE

Consider input of _

{avEC} = [2. -3. 4.] and [B], 5 =

The output will ther be

-

7.] [-8.1 [ 9.]
(2 =]2. -3. 4.
23 i [10. 1. ] 12.

(14,  24. 36.]

| 20. -33. 48.].




Subroutine COMENT reads input comment cards and reproduces
each card in the printed output of the computer run. Each com-
ment card may have any keypunch symbol in card columns 1 thru
78, A use of COMENT is to print an explanation of coordinates
used in a computer run. Thus, this information is always re-
tained with a run to correlate matrix location numbers with
physical coordinates.

COMENT
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Subroutine DCOM1 decomposes [A] to form an upper triangular

T
matrix [Z2) such that [A] = (2] [Z2]. [A] must be real, square,
symmetric and positive definite. The Choleski square root method

is used.

where

NxN

In matrix notation,

T

[A]NxN = L2]y,y Bl

N is the size of the matrices (square).

DESCRIPTION OF TECHNIQUE

To determine the elements of [Z], consider the multiplica-

tion of two matrices.

{a] = (B] (z].

A general term of [A] is

But

thus

Therefore

i1 215 ¥ P12 22

[l
—
(3]
e
"3
-

(8] =

ij =~ “3i

+ ..o+ 2.

=2y 235 % % Ly Ni 2Ny
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Because
zij =0 for i - j,
we have
35 = %13 21y Y% 2y Yoo T Ry Ay (-3
and

1t

z< . + z2 + + 2¢

i li 21 7t ii”

From these last two equations the formulas for determining z_,

are obtained. That is, 1]
11 " ¥°%
‘13 T %1y /gll G =2, N
i-1
- - 2 . .
234 334 4 %ki (i=2, 8
k=1
i-1
2., =fa - E 2, .2 z,, (i > 1)
ij ij ki “kj ii
k=1
29 = O (i~ 1)
MISCELLANEOUS

The diagonal elements of [Z] are the square root of the deter-
minant ratios of {A]. The determinant of [A] is the product of
these determinant ratios. That is,

N

- 2
N n 22,.

i=1



EXAMPLE
The input matrix to be decomposed is
[A]3x3 =1 9. 15. 12.
15. 29. 22.
12. 22. 53.

Using the technique described previously, the reader can
verify the output to be

(2], =[3. 5 4.
0. 2. 1.
0. 0. 6.

REFERENCE

Faddeeva, V. N.: Computational ‘lethods of Linear Algebra.
Dover Publications Inc., New York, 1959.

DCOM1--3/3



DIAG

Subroutine DInG places the elements from a vector (row or col-
umn matrix) AVEC} into the corresponding diagonal locations of a
square matrix [Z] and sets the off-diagonal elements of the square

matrix to zero. In subscript notation,

r4 = a

ii i
zij = Q.
In matrix notation,
-r
[Z]NxN Bt ]
ay
a [ 4

. N

where N is the size of [Z] (square), and the length of {AVEC}.

EXAMPLE

Consider input of

"
N
.

{avec)

and N

3.

The result of this subroutine will give

[Z]3x3 =]0. 2. 0.
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Subroutine DIFFl performs numerical differentiation assuming
a linear function between known points. The x and y coordinates
of the known points are given by the elements of {XA} and the cor-
responding elements in a column of [YA], respectively. FEach column
of [YA] gives the y coordinates of a different set of points.
Derivatives are calculated at selected x coordinates which are
given by the elements of {XZ}i. These derivatives are placed in
[Z}. Each column of {Z] has derivatives of the respective column
of {YA]. Differentiation of an extrapolated linear function is
performed when any element of {XZ} exceeds the limits of {XA}.

DERIVATION OF TECHNIQUE

Given the x,y coordinates cf points i and i+l, the derivative
dy/dx at X is to be found by assuming a linear function.

Yy
i+l
Yi"l"l /
Yi i :
L,
i k i+l

From the above sketch it is obvious that

3 I L0 WS w
dx x, i+l T M

The following tabulation gives the correlation between the nomen-
clature of Equation (1) and that used in the Fortran coding in
the subroutine.

Equation (1) Fortran Coding*
X, XA(I)
X4 XA (I+1)
Vi YA(I) *
*
i+l YA(I+1)
X XZ(K)
dy/dxl 7 (K) *
"

*Subsceript J, denoting different sets of points,
has been omftted for clarlty.
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EXAMPLE

Consider the following two sets of points denoted by (1) and

(2).

y

The coordinates of the points are given by

-2. -4, 2.
{xa} =1 1. and (YAl =] 2. -4.].
3. 1. -2,

{XA} gives the x coordinates of the points in both sets (1) and
(2). Column 1 of [YA] gives the y coordinates of the points in
set (1) and column 2 of [YA] gives the y coordinates of the points
in set {2). Derivatives are wanted at x = -1. and x = 7., that is,
at {XZ} = l—l. . At x = -1., derivatives of dy/dx = 2. and

7.

dy/dx = -2. are calculated from columns 1 and 2 of [YA], respec-
tively, using rows 1 and 2 of {XA} and [YA]. At x = 7., deriva-
tives of dy/dx = -0.5 and dy/dx = 1. are calculated from columns
1 and 2 of [YA]), respectively, using rows 2 and 3 of {XA} and
[YA]. The final result is {Z] =1{ 2. - .l.

-0.5 1.

To relate this example problem to a practical problem, con-
sider {XA} to be the collocation points (panel points) of a vehicle
and [YA] to be the modal displacements for two modes. Gyros are
to be placed at stations x = -1, and 7. (i.e., {XZ}). The modal
slopes ([Z]) are to be found at these stations.
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Subroutine DIFF2 performs numerical differentiation assuming
a diparabolic function between kncwn poLnts. A parabolic function
is used where only three points are zaviilable. A diparabolic
function is obtained from the weighted average of two adjacent
parabolas and will be explained later. The x and y coordinates
of the known points are given by the elements of {XA}l and the cor-
responding elements in a column of [YA)], respectively. FEach column
of [YA] gives the y coordinates of a different set of points.
Derivatives ar_ calculated at selected x coordinates which are
given by the elements of {XZ}. These derivatives are placed in
[2). Each column of {Z] has derivatives of the respective column
of [YA]. Differentiation of an extrapolated parabolic function
is performed when any element of {XZ} exceeds the limits of {XAl.

DERIVATION OF TECHNIQUE

The diparabolic differentiation procedure is obtained as fol-
lows. Because this procedure is dependent upon using parabolas,
the parabola will be considered first. Given the x,y coordinates
of points 1, 2, and 3, a parabola is to be fitted to these points.

N

The equation for a parabola wi;h axis parallel to the y axis is

y(x) = Ax2 + Bx + C
or
a
y(H) = [HZ H 1] |b
(04
where
X-Xl
H=—— (1a)
X, =X
or
X-Xz
H = —— (lb)
X - X
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is used for ease in later algebraic calculations. The coefficients
a, b, and c can be determined because x (or H) and y crordinates
at poiats 1, 2, and 3 are known. That is,

-
vl [z v, 1]fa

=1y
Y, H2 H2 1 b

from which

a Y1
b= [Dvl] v,
| © ¥y
where
Hy-H, - (H)-Hy) H, -4,
—(Hy-H ) (H#H,) (M -H)(H +H)) - (H)-H,) (H +H,
] - _H2H3(H2—H3) -H H; (H,-H,) H H, (H,-H,) .
H{ (H,-Hj) - Hj(H,-H3) + Hi(H,- H,)
therefore Y,
y#) = (B2 H 1] [wl]ly,]. 3)
Y3

3

For a given set of points as shown below, a parabolic function
is used to the left of point 1 and between points 1 and 2. Also
a parabolic function is used to the right of the last point n
and between points n-1 and n. Diparabolic functions are used
between all other points. '
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y 1-1-\ i+1
2 i-z L 4 [ N\ i ) n-2 n
- ~

1 3 L4 ~ | - n-1

. Bay i-1 Bay
|nay 1| | | n-1

x
d—parabolic—* diparabolic *parabolic-»

Bay 1 (and to the left of point 1)

y
3
i/
|
- | X
"
The “erivative dy/dx at X is calculated using the chain rule for
differentiation. That 1s,
dy _ dy dd
dx dH dx

From Equation (3),

Yy
d v
=2 1 0] v}y,

73
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and from Equatio~ (la),

. g 1
dx X, = X,
‘therefore
i) yl
dy o1 '
ax " %, - % (2 1 0] [vl] vy, %)
y

Also, from Equation (la),
H, = (xk xl)/(x2 - xl) (4a)
H = (xl - xl)//(x2 - xl) =0
H, = (xz - xl)/(xz - x1)
H, = (xa - xIL/sz - xl) = D. (4b)

Using these expressions with Equations (2) and (4), the final
result is obtained as

L}
[

] 1/p 1/(1-p)  -1/p(1-D)|f v,

gy 1 |zu 1‘
X2 - X1 k _

dx

(14D)/D  -D/(1-D) 1/pQ1-D) ]}y, § (&)
Y3

The following table gives the correlation between the nomen-

clature of Equations (4a, b, c) and that used in the Fortran coding
in the subroutine.

Equations (4a,b,c) Fortran Coding®
% XA(m) m=1, 2, 3
Yo, YA(m) * m=1, 2, 3
Hk H
Xy X2 (K)
dy _—
dx « 2 (k)
k

*Subscript j, denoting different sets of
points, has been omitted for clarity.
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Interior Bay i-1

y 1+1
I kay -1 | V4
I"' " /
/
Parabola A,l i-1 /
~. /Parabola B
~ e
i‘,,/ \\\\ =~
N~
l X
K

The derivative dy/dx at x, is found as follovs. A diparabolic

k
function in bay i-1 of the above sketch is cbtained as the weighted
average of parabolas A and B. That is
v(H) = (1-H) y, + Hy, (5)
where
X - X
i-1
Hoe om0 (6a)
i i-1

as in either Equations (la) or (1b).

d

g™ (*-2 = %) /(% 7 %) < 0
Hy = m %) /(M7 %) T b

From Eguations (2) and (3),

For parabola A: Hi-Z = (xi-Z - xi—l»/(xi - xi-‘) z (6b)

Yi-2
= 2
y,(H) = (W2 H 1] lwAr Vi

Yi
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where
-1/¢(1-C) 1/C 1/(1-C)
!*A’ = | 1/ca-c) -Q+c)/c  -c/(1-C)
0 1 0

For parabola B: H _, = (xi~l - xi_l)/1x1 - xi-l) =0

O e/ 7 %) 1
Hivr ™ (S ™ %) /(% ~ %) 2 D (6c)
From Equations (2) and [3),
Y141
yp() = [(H* H 1] 1wnl Yy
Yinl
where
1/D 1/(1-p) -1/p(1-D)
lwnl = |-(1+D)/D -D/(1-D) 1/D(1-D)
1 0 0

Substituting these expressions for Ya and Yy into Equation (5)
gives

y(#) = [H3 HZ H 1] [v] @)
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where —

1 C-D D-C -1 -
c(1-C) cDh (1-C) (1-D) D(1-D)
-2 2D - C 1-20 + C 1
c(1-C) cD (1-¢) (1-D) D(1-D)
bl =f -(14C) —C 0
c(1-C) C 1-C
|0 1 0 0 |

The derivative dy/dx at X is calculated using the chain rule for

differentiation. That is,

From Equation (7),

Yi-2
dy 2 Yi-1
= [3H 2H 1 0] [v]
dH
Yi
RSN
and from Equation (6a)
@i _ 1
dx xi - xi_1
At X = xk
_
yi_zT
&y . , Yi-1 ’
o B Puk 28, 1 0] |, (8)
i i-1 i
| Y541 |

where [¥]} is given above.
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The following table gives the correlation between the nomen-

clature of Equations (6a, b, ¢ and 8) and that used in the Fortran
coding in the subroutine.

Equations (6a,b,c and 8) Fortran Coding*
X o XA(I-m) m=2,1, 0, -1
Yi-m YA(l-m) * m=2,1, 0, -1
Hk H
Xy XZ (K)
dyi *
dx x z(K)
k

*Subscript j, denoting different sets of points,
has been omitted for clarity.

Bay n-1 (and to the right of point n)
y

Bay n~1

n-2

The derivative dy/dx at X, is calculated using the chain rule for

differentiation. That is,

dy _ dy di
dx dH dx
From Equation (3)
!
ay _
qq = (28 1 0] [wlfy,

Y,

3



and from Equation (1b),
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ad _ 1
dx X xn—l
therefore v
“n-2
.gi = l 1y
dx - % " 20 1 0] [v] Yooy 9)
n n-1
yn

Also, from Equation (1b),

Hk = ( - xn—l)/(xn - xn--l)

i

n-2 (xn-2 - xn—l)/(xn - xn—l)
a1 ™ (fo-1 ™ *n-1) /2 ™ %a-1)

a7 T %)/ % T Fem)

(9a)
: C (9b)
= 0
=1.

Using these expressions with Equations (2) and (9), the final

result is obtained as

dyy . __1_
dx X -

-1/C(1-C) 1/C

- [znk 1] .
n n-1 1/c(1-¢) -~Q1+C)/C -C/(1-C)

yn-Z
Yoo (9C)‘

1/(1-C)

n

The following table gives the correlation between the nomen-
clature of Equations (9a, b, ¢) and that used in the Fortran coding

in the subroutine.

Equations {9a,b,c)

Fortran Coding*

dx x
k

XA (NXA-m) m=20,1, 2
YA(NXA-m) * m=0, 1, 2
H

XZ(K)

Z(K) *

*Subgcript |, denoting different sets of
points, has been omitted for clarity.
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EXAMPLE

Consider the following two sets of points denoted by (1) anu

(2).

(1)

100 110

The coordinates of the points are given by

10.] 1. -1.]
20. 2, -2.
{xa} = ] so0. and [YA] = {3. -6.
7C. 9, -2.
110 - 2.,

{XA} gives the x coordinates of the points in both sets (1) and
(2). Column 1 of [YA]) gives the y coordinates of the points in
set (1) and column 2 of [YA] gives the y coordinates of the points
in set (2). Derivatives are wanted at x = 5., x = 100., and

x = 65., that is, at

5.
{Xz} = §100.
65.

At x = 5., derivatives of dy/dx = 0.1333 and dy/dx = -0.08333 are
calculated from columns 1 and 2 of [YA], respectively, using rows
1, 2, and 3 of {XA} and (YA]. At x = 100., derivatives of dy/dx
= -0.2333 and dy/dx = 0.0666 are calculated from columns 1 and 2
of [YA], respectively, using rows 3, 4, and 5 of {XA} and [YA].
At x = 65., derivatives of dy/dx = 0.3083 and dy/dx = 0.2354 are
calculated from columns 1 and 2 of (YA), respectively, using
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rows 2, 3, 4, and 5 of {XA} and [YA]. The result is

0.1333 -0.08333
{z} = }-0.2333 0.0666
0.3083 0.2354 .

To relate this example problem to a practical problem, con-
sider {XA} to be the collocation points (panel points) of a
vehicle and [YA] to be the modal displacements for two modes.
Gyros are ro be placed at stations x = 5., 100., and 65. (i.e.,
{XZ}). The modal slopes ([Z]) are to be found at these stations.

REFERENCES

Griffin, J.A.: "A Diparabolic Method of Four-Point Interpola-
tion." Journal of the Aeronautical Sciences, Vol. 28, No.2,
Readers' Forum, February 1961.



DISA

Subroutine DISA removes (disassembles) a matrix [Z] from
matrix [A] starting at a designed row, column location (IRA, JCA,
respectively) in [A]. The {Z] matrix must be within the row,
column limits of [A]. In subscript notation,

= 1, NRZ
= 1, NCZ

[
[
P
)
—
Lo pde
[/

where

k

i+ IRA-1

L

j+JcA-1
NRZ is the number of rows of [Z], and
NCZ is the number of columns of [Z].

EXAMPLE

Consider a matrix defined as

Matrix [Z]2x3 is to be obtained from [A] starting at the 2,1 loca-

tion (IRA = 2, JCA = 1) of [A]. The result of this operation will
be

[Z]2x3 = 13. 4. 5.

6. 7. 8.

The matrix [A] remains as originally defined.
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Subroutine EIGNl calculates the eigenvalues (proper values,
characteristic roots, latent roots) and eigenvectors (proper
vectors, characteristic vectors, latent vectors) of a real sym-
metric matrix using a method of C. G. J. Jacobi. The eigenvalue
problem can be expressed as

(a] f¢] = [¢] CA ) ¢9)]

where
{A] is a real symmetric matrix of order N,

[¢] is a matrix whose columns are the eigenvectors of
Equation (1),

[ A ] is a diagonal matrix whose elements are the corre-
sponding eigenvalues.

This method diagonalizes matrix [A] by successive plane rota-
tions and leads simultaneously to all eigenvalues and eigenvectors.
Theoretically, an infinite number of plane rotations are necessary
to produce the diagonal form with all off-diagonal elements equai
to zero. Practically the number of plane rotations is limited to
a finite number by stopping the process when the off-diagonal ele-
ments are less than a prescribed value. This prescribed value
(denoted as FOD in the subroutine) may be selected and input by
the analyst or at the analyst's option calculated in the sub-
routine as a constant times the trace (sum of the diagonal ele-
ments) of [A].

A threshold version is used. That is, each off-diagonal ele~
ment of [A] is compared in regular sequence with a threshold
value and a plane rotation performed only if its magnitude ex-
ceeds the threshold value. This is done to give faster conver-
gence to the diagonal form. Since [A] is symmetric only the upper
half need be examined. The threshold value is lowered whenever
there are no remaining off-diagonal elements with magnitudes
larger than the threshold. The lowering of the threshold is con-
tinued until the threshold is less than a prescribed value (FOD).

The initial threshold value in the subroutine is obtained by
dividing the maximum off-diagonal element o: [A] by 10.- Sub=-
sequent reductions in the threshold value are accomplished by
dividing the threshold value .y 10 also,
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The threshold version is the fastest version of Jacobi's
method (Reference 2).

An important feature of the Jacobi method is that equal
eigenvalues and the corresponding eigenvectors are easily cal-
culated with no change in the algorithm.

DESCRIPTION OF TECHNIQUE

h . , .
Assume that an Nt order matrix [T] exists that is ortho-

normal that is,([’I‘]T (T] = [I]) such that

tr1® (a1 (1] = D3, )

where [ D ] is a diagonal matrix and [A] is the original matrix.
Premultiply Equation (2) by [T] to give

{a] [T} = (T} [ D], (3)

Comparing Equations (1) and (3) it is seen that if the matrix [T]
can be found which transforms a real symmetric matrix [A] into a

diagonal matrix [ D ], then the ith diagonal element of [ D ] is

the ith eigenvalue of [A], and the ith column cf [T] is the ith

eigenvector of [A].
The orthonormal matrix [T] is built in stepwise fashion using
elementary orthonormal transformations [T]k to annihilate, in turn,

seincted off-diagonal elements of [A). That is, starting with the
given matrix [A], operate as follows,

1}

(4] [al,

——
L]
Spnd
-
—
>
[ S
o
——
3
Cod
'_J
L}

(al,

(11, (A, [1], = [A],

[, (Al (1), = (a]
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so that

[ty « - . (71, (7]] [A] (7)) [T], «.. [T1, = (A],.

Comparing Equation (4) with Equation (2), the [T]k must be chosen
so that the triple matrix product result [A]k converges to
[D]=1[X1]) and the continued product [T]l [T]2 .ee [T]k con-
verges to [T] = [¢]. The most important property of ['l‘]k is that
each triple matrix product (rotation) with [A]k—l in Equation (4)

causes a particular off-diagonal element in [A] to vanish. As

k-1
mentioned before, an off-diagonal element of [A]k—l

elimination if it exceeds a threshold value and is referred to as
the pivot element. If the p, g element of [A]k—l meets the cri-

is picked for

terfa, then the transformation matrix used is

p q

- T i}
[ti, = |1
1
P C -S
1
1
q S c
1

1
L i

which is orthonormal. For simpler notation, C = cos 9, and
S . sin @ has been used.

(4)

(5
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7

The value of 8 is calculated as shown in the following ex-
ample. A system of order 5 with pivut location p = 2, q = 4 is
used, but the results may be applied to any size system with any
pivot location p, 3.

(Al = (1)) (A), (7],
B 1
al‘q alsl 1

a a C =
%1 %pp %p3 %pa %ps

or
=Tl ey 3, 2

331 %3 %33 %q 35

a a a a S [
al “qp “q3 %aq %5

[ %51 ®sp ®s53 %sq Tss] | 1]

ol 3¢ et 13 T3S At a5 ]
aplc + aqls aPPC2 + z.apqcs N aqqy JPJC + aqss ‘_aqq - app)cs + apq(C" -5%) apsc + aqSS
331 alpc + a3qS 33] -alps +* a3qC 335
“apy$ *+agC (aqq - apchs +a (2 - 59 -a,yS + ag5C app52 - 2a,Cs + aqqcz -a,55 + ag5C

{ a5 35pt + 35,8 353 agpS * agC ass

where use is made of the symmetry property anq = a . As can be

are altered in

seen, only the p, q rows and columns of [A]k—l

calculating [A]k'

Setting the pivot element p, q of [A]k to zero gives

a (cos? 6 - sin? 8) = (a -a ) sin 6 cos 6
Pq \ PP qq

from which

2a

tan 0 = Pq .

(%pp ™ %qq) * anpp B aqq)2 g

The sign used with the radical is the same a» the sign of
(app - aqq). This is done to avoid small differences of large

numbers.

(6)

¢
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Using trigonometric identities gives

cos 0 = l/ﬁ/l + tan? 0 (8)

and
sin 0 = tan 4 cos ¢ 9

as the values to use in Equation (6) to set apq = 0.

Tt should be obvious that even though the pivot element has
been reduced to zero by one rotation, it may take on a non-zero
value in some later rotation. A rotacion gives a step tow rd the
diagonal form because the sum of the squares of the off-diagonal
elements of [A]k is less than that of [A]k-l by the amount 2a“ .

The importance of the threshold version is re-emphasized in that
small values (relatively) of the off-diagonal elements of [A] are
not used for pivot elements. Proof of convergence is in the
literature (References 2 and 3) and will not be given here.

As mentioned before, the continued product [T]l [T]2 ce [T]k

converges to the eigenvectors [¢]. Thus, [4-]k would be calculatad
as

o], = (o], (1],

%21 %22 %23 %24 %25 ¢ s
Y31tz %33 Y3 s 1
far Y2 %43 Pas Y45 5 ¢
bs1 sz sy fsa %ss| | i
B I P VL R S PR I 1] (10)
tor 9220 ¥ 43S 4p3 S H o0 4y
931 0320 F 43S 033 935+ 0,00 b5

b1 %ol T S gy TS R el g
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for our previcus example of a system of order 5 and pivot location

p =2, q= 4. As can be seen, only the p, q coiumns of [‘t']R_1 are

altered in calculating [¢]k.

The resulting eigenvalues and elgenvectors can be checked as
follows. Post multiplying Equation (1) by [¢]T glives

(Al = (o] [ 2] (817 (11)

because the eigenvectors are orthonormal. Therefore, to check the

results, perform the triple matrix product [¢] [ 2 ) [¢>]T and com-~
pare with the original [A]. This operation is not performed in the
subroutine.

EXAMPLE

Consider [A] =| 1.5 -1//2 =-.5
1.0 -1//2
(sym) 1.5

First pivot: p =1, q =2

apq = a12 « =1/2
app = a11 = 1.5
aqq = ay, = 1.0

From Equations (7), (8), and (9)

tan § = -1//2
cos 8 = V2/3

sin 0 = -1//3

From Equations (6) and (10), the results of the first pivot

(A]; = 2, 0. 0. -I
05 "/3—/_2-

(sym) 1.5

are



r-___ -
and (414 =| V273 1/Y3  o.
-1/3 273 o.|
0. 0. 1
Second pivot: p =2, q =3
apq = a5, = —/572
jpp = a22 = .5
aqq = agq = 1.5
From Equations (7), (8), and (9)
tan 6 = 1/V3
cos G = V3/2
sin 68 = .5

From Equations (6) and (10), the results of the second pivot

are
[A], =1 2. 0. O.
0 0.
(sym) 2.
and
- 23 . R
[¢], 2/3 5 i
I S S
V3 V2 V6
/3
L_0. .5 -E__ .

The diagonal elements of tha [A], are the eigenvalues and the
volumns of [%], are the corresponding eigenvectors,

EIGN.--7/8
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Subroutine EIGN]A calculates the eigenvalues (proper values,
characteristic roots, latent roots) and eigenvectors (proper
vectors, characteristic vectors, latent vectors) of a real sym-
metric matrix using z method of C. G. J. Jacobi. This subroutine
is a modification of Subroutine EIGN1l and uses a convergence
tolerance on A instead of a final off-diagonal value to terminate
the solution. The eigenvalue problem can be expressed as

{a] (o] = [¢e]1 DN [1]
where
[A] = a real symmetric matrix of order N;

[¢]
t

a matrix whose columns are the eigenvectors of Eq [1];

a diagonal matrix whose elements are the corresponding
eigenvalues.

This method diagonalizes matrix [A] by successive [lane rotations
and leads simultaneously to all eigenvalues and eigenvectors.
Theoretically, an infinite number of plane rotations are necessary
¢o produce the diagonal form with all off-diagonal elements equal
to zero. Practically, the number of plane rotations is limited to
a finite number by stopping the process when [xi(k) - Ai(k—l]/

Ai(k), i = 1, N is less than a prescribed value (k refers to

plane rotation number). This prescribed value (denoted as CTVAL
in the subroutine) may Le selected and input by the analyst or
at the analyst's option determined in the subroutine.

A threshold version is used, that is, each off-diagonal element

of [A] is compared in regular sequence with a threshold value

and a plane rotation performed only if its magnitude exceeds the
threshold value. 7nhis is done to give faster convergence to the
diagonal form. Because [A] is symmetric, only the upper half
needs be examined. The threshold value is lowered whenever there
are no remaining off-diagonal elements with magnitudes larger than
the threshold.

The initial threshold value in the subroutine is obtained by divid-
ing the maximum of f-diagonal element of [A] by 10. Subsequent
reductions in the thresholl value are accomplished by dividing the
threshold value by 10 also,

The threshold version is the fastest version of Jacobi's mechod
(Ref 2).

An lmportant feature of the Jacobi method 1is that equal elgenvalues
and the corresponding elgenvectors are easily calculated with no
change in the algorithm.
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DESCRIPTION OF TECHNIQUE

Assume that an Nth order matrix [T] exists that in orthonormal,
that is, ([T)T [T! = [I]) such that

(11" (a1 1] = t0d, (2]

where {D] is a diagonal matrix and [A] is the original matrix.
Premultiply Eq [2] by [T] to give

(a] [r] = [T} D). [31]
Comparing EQ [1] and [3], it is seen that if matrix [T] can be

found which transforms a real symmetric matrix [A] into a diagonal
matrix [DJ, then the 1th diagonal element of [D] is the ith eigen-
value of {A], and the ith column of [T] is the it:h eigenvector of

[A].

The orthonormal matrix [T] is built in stepwise fashion using
elementary orthonormal transformations [T]k to annihilate, in

turn, selected off-diagonal elements of [A]; that is, starting
with the given matrix [A], operate as follows,

(A) - [al,
T _

()] [aly [T], = (Al
T

(11} (A}, 1], = [Al,

(1) (Al (1], = (Al

so that

(rly - - . 71y (T3] [A] [T]) (1), . . . [T] = (Al . [4]

Comparing Eq (4] with Eq [2], [T]k must be chosea so that the
triple matrix product result, [A]k converges to [D] = [A} and the
continued product ['1‘]l [T]2 . [T]k converges to [T] = [¢]. The
most important property of [T]k is that each triple matrix product
(rotation) with [A]k-l in Eq [4]) causes a particular off-diagonal

element in [A]k_1 to vanish. As mentioned before, an off-diagonal
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element of [A]k_l is picked for elimination if it exceeds a thres-

hold value and is referred to as the pivot element., If the p, q
element of [A]krl meets the criteria, then the transformation matrix
used is )

P q
rl, = |1 (5]
‘1

p c

1 -S

1
q S o
1
1

which is orthonormal. For simpler notation, C= cos 6, and
Sz sin © has been used.

The value of 6 is calculated as shown in the following example.
A system of order 5 with pivot location p = 2, q = 4 is used,
but the results may be applied to any size system with any pivot
location p, q.

T
(Al = (1)) (A1, (1],

- - -

T ]
Thlay % 2 % %8| |}

a a a a a € -5
pl Tpp TP3 Tpg RS

31 %3 %33 *aq s

ar %ep fa3 %aq "as s ¢ [6]
[*st ®sp *s2 %sq %ssf | Y
[ 30T NS 13 TapS At s
‘pxc +a,s appcl . zapqcs . ‘qqsz 25t + a8 (aqq - app)cs + apq(cf - s?) ’psc +3.8
1Y a0t as 233 B "R P 3
“pls + aqxc (.qq - app) cs + " (c? - s7) —apzs + ‘q)c . appsz - 2apqcs + aqqcz -apss + e
i ‘51 aspc + asqS ISJ -asps + asqc 335
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where use is made of the symmetry property a_ = As can

a >
Pq qp
be seen, only the p, q rows and columns of [A] are altered in
k-1
calculating [A]k'

Setting the pivot element p, q of [A]k to zero gives

a (cos2 8 - sin2 6) = (a _-a ) sin 6 cos ©
Pq 1P qq
from which
2?29
tan ¢ = . (7]
6 -2 ):ha -a )2+ dal
PP qQq PP qq Pq

The sign used with the radical is the same as the sign of
(app - aqq). This is done to aveoid small differences of large

numbers.

Using trigonometric identities gives

cos 6 = 1//1 + tan2 8 (8]

and
sin 6 = tan 6 cos © [9]

as the values to use in Eq [6] to set apq = 0.

It should be obvious that even though the pivot element has been
reduced to zero by one rotation, it may take on 31 nonzero value
in some later rotation. A rotation gives a step toward the
diagonal form because the sum of the squares of the off-~diagonal
elements of [A]k is less than that of [A]k_1 by the amount

2a§q. The importance of the threshold version is reemphasized

in that small values (relatively) of the off-diagonal elements of
[A}] are not used for pivot elements. Proof of convergence is in
the literature (References 2 and 3) and will not be given here.

As mentioned before, the continued product [T]l [T]2 “es {T}k

converges to the eigenvectors [¢]. Thus, [@]k would be calculated
as
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=l %2t fw ol 1 |

®1 Y22 %23 %2 %25 ¢ -

*31 %32 %33 %3 %35 1

% %2 %3 % % s¢

Esl %52 %53 ¥sa ®ss| | f.

. ) T [10]
ot ottt 3 Pt s

- c o

by 90 0S¢y TSty 25

03 030 T 835 ¢33 Py
- c

1 ®a® S %3 TR Tt s

$5,C + 05,8 053 "5y 95,0 0

for our previous example of a system of crder 5 and pivot location
P=2,q="%. As can be seen, only the p, q columns of [¢]

R-] are
altered in calculating [o]k.

the resulting eigenvalues and eigenvectors can be checked as
follows. Postmultiplying Eq [1] by [¢]T gives

(al = [o] ) [0)F [11]

because the eigenvectors are orthonormal. Therefore, to check the

results, perform the triple matrix product [¢] [A] IO]T and com-

pare with the original [A]. This operation is not performed in
the subroutine.

Example

Consider [A] = 1.5 -1/v2 -0.5

1.0 -1/v2

Lfsym) 1.5 .
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First pivot: p =1, q = 2"

apq = alZ = -1v2,
app = a11 = 1.5
aqq =ay, = 1.0

From Eq {[7], [8], and [9)

tan 6 = =1/vV2
cos B = V2/3

sin 6 = =1//3

From Eq [6] and [10], the results of the first pivot are

a 2 h
(Al . 0. o
0-5 ‘v3/2
| (sym) 1.5
- —

‘and

(el = ,'/273 1/V/3 0.
' -1/¥3 V273 o.

Q. a. 1._| .

S

Second pivot: p =2, ] = 3

%pq T %23
%pp " %22
aqq = 833 = 1.5

From Eq [7]), [8], and [9]

]
[

tan 6 = 1/V/3
v3/2

0.5

cos 9

sin @



From Eq [6] and [10], the results of the second pivot are

[A]2 = 2.
(sym)
and _
0], = V273
1
3
0.
-

0.
0.
2.
1
0.5 - =
2/3
1 1
/2 /6
V3
0.5 -2

EIGN1A - 7/7

The diagonal elements of the [A]2 are the eigenvalues and the

columns of [tb]2 are the corresponding eigenvectors.
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Subroutine FR1l calculates the frequency response {X(w)} from
the following differential equation expressed in the frequency
domain:

(~w?[A] + iw[B] + [C]) {(X(w)} = [DH{F(w)}. (1)

Matrices [A], [B], [C], and [D} are input directly to this sub-
routine along with a set of values of w. For a structural prob-
lem, [A] is the mass matrix, [B] the damping matrix, [C] the
stiffness matrix, and [D] is the transpose of the vibration mode
shapes or a unity matrix depending on whether the equations are a
modal or discrete representation of the structure. The force
{F(w)}, assumed real, is calculated internally in the subroutine
using linear interpolation with [TABW] and [TABF] which are both
input to the subroutine. As an illustration of the use of [TABW]
and [TABF] consider the following example:

Fy

2.0 .

F
1.04 2
.5 -
-
0o w

5 10 15 20

The table (A table is defined in this report as a matrix that
may have incomplete column data in some rows.) giving the independ-
ent variable coordinate w is

[TABW] =[ 0.  20.
5. 10. 15.1.
!

The table giving the corresponding coordinates of the dependent

variable F is
[TABF) = 2. 2.
ls 1. [} L]
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The following values for {F(w)} will be obtained by linear inter-

polation at w = 7.
{Flw=7)}=1[2.
.7].

DESCRIPTION OF TECHNIQUE

First, consider the inversion of a complex matrix. Let ([G]
+ i[H]) be the original matrix expressed as a complex matrix in
terms of two real matrices [G] and [H]. The product of a matrix
with its inverse (assumed to be ([G] + i{H])) is, by definition,
unity; thus
((G] + 1{H([G) + i[x]) = [GI[G] - [H][H] + i([H][G] + [GI[H]) = [I] + i[o]
or, equating real and imaginary parts,

[G1[G] - [H][H]

[H1[G) + [G][H]

(1]
[o].

]

Two approaches now exist for the solution. From Equation (2b),

either [E] ~[E][H][G]-1 (assumes [G] is nonsingular)},

or [G] = ~[H][G)[H]~! (assumes [H] is nonsingular).

Inspection of Equation (1) shows that
(G]

and [H]

-{€] - w?[A)]

w([B].

Because many values of w can make [G] singular (and also ill-con-
ditioned such that the inverse is bad), it was decided to use
Equation (3b) which then requires the damping matrix [B] tec be
nonsingular. Substituting Equation (3b) into (2a) yields

[H] = -(l6][H]=1[G] + [H])7!
To eliminate having to do the triple matrix product [G][H]™'[G] for
every value of w, Equation (1) is modified so that [H] = w[I]. This
is done by premultiplying by [B]~! so that

(-w?[B]=1[A] + 1w[1) + [B)"CH{X(w)} = [B])=}[D){F(w)}.

(2)

(2a)

(2b)

(3a)

(3b)

(3c)

(1a)



Solving for

where
[G]
[H]

and [G]

{X(w)} gives

{x (w>} = [G)[B)~ [D}{F(w))

real

and {x. (w)} = [H)[B]) ! {D){F(w)}

imag

- 2 [H][e]

-w([6]? + w?[1])!}

[B]-1[C] - w?[B]"1[A).

FR1--3/3

(4a)

(4b)

(4c)

(4d)

(4e)
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Subroutine FRAE1l calculates frequency response additional
equations. That is,.

{Z(w)} = [A]{X(w)}

where {X(w)} is the complex response previously calculated and
written on tape in frequency response subroutine FR1. That tape
is read in this subroutine FRAEl to calculate {Z(w)}.

If {X(w)} is the response calculated from a modal representa-
tion of the structure, then [A] would be the mode shapes so that
Equation (1) would then give {Z(w)} as the response of the dis-
crete system. {Z(w)}! will also be comulex. {Z(w)} is printed for
every w value of {X(w)} from tape NXTAPE and also written on tape
NZTAPE for "any subsequent use. '

1)



INTAPE

Subroutine INTAPE initializes a tape (disk is preferred, see
writeup of Subroutine WTAPE) for the FORMA tape system by writing
EOT (end of tape) at the beginning of the tape (disk). A.l FORMA
tape subroutines recognize this EOT as being the end of written
data. Each "rew" tape (disk) must be initialized with this Sub-
routine INTAPE to make the tape (disk) compatible with the other
FORMA tape subroutines (LTAPE, RTAPE, WTAPE, and UPDATE).

A "new" tape (disk) is defined as a tape (disk) for which it
is desired to start writing matrix data at the front of the tape
(disk). Thus, a "new" tape (disk) could be one with obsolete
FORMA matrix data on “t as well as one that has never been wriiten
on by the FORMA system.

As an example, pertinent statements from a program containing
INTAPE could be:

DATA NIT,NOT/S5,6/
1001 FORMAT (12A6)
NRTAPE = 10
READ (NIT,1001) IFINIT, TAPEID
IF (IFINIT .EQ. GHINLTIL) CALL INTAPE(NRTAPE,TAPEID)

The input data (starting in card column 1) to this example
program would be:

either  INITILTXXXX, if the tape is to be initialized.
(TXXXX represents the particular tape number
used, e.g., T1234);

or NOINIT, 1f the tape 1is not to be initialized.
The tape identification is not needed.
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Sutroutine INY1 inverts a matrix by the bourdering method (Ref
1l). In matrix notation, the inversion is represented by

. = ..l
where

fA] is the matrix to be inverted,
(2]} is the result, and
N is the size of the matrices.
Matrix [A] may be nonsymmetric. The determinant ratics of [A] ace

also calculated and printed. The determinant of [A] is the prcduct
of these determinant ratios.

An inversion check, [Z] [A), is calculated (The vproduct should
be a unity matrix.) and a summary of these results is printed.

REFERENCE

1. Bodewig, E.: Matriz Caiculus, North Holland Publishing Com-
pany, Amsterdam, 1959.



Subroutine INV2 inverts a matrix by the rank annihilation
method (Ref 1). In ratrix notation, the inversion is represented
by

- - _1
(2l = [AlRuy

where

{A} is the matrix to be inverted,
[Z] is the resuit, and

N is the size of the matrices.
Matrix [A] may b~ nonsymmetric.

An inversic- .k, fZ] 1A], is calculated (The product should
be a unity matrix.} and a summary of these results is printed.

REFERENCE

1. Ralstor. A., and Wolf, H. S.: Mathematical Methods for Digital
Computers. John Wiley & Sons, 1966.

INV2
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Subroutine INV3 inverts a symmetric matrix using triangular
decomposition and triangular inversion. In matrix notation, the
inversion is represented by

= -1
where

[A] is the symmetric matrix to be inverted,
[Z] is the result (also symmetri:), and

N is the size of the matrices.

In addition to being symmetric, matrix [A] should be positive
definite. Because symmetry is assumed, only the upper half of
[A] will be used to calculate [Z] which is also symmetric. The
determinant ratios of [A] are also calculated and printed. The
determinant of [A] is the product of these determinant ratios.

An inversion check, [2] [A], is calculatea (s he product should
be a unity matrix.) and a summary of these results is printed.
Only che upper half of [A) is used to calculate [Z], but all of
[A] (and [Z]) is used in the inversion check. Thus, errors in
the inversion check can result frcm a nonsymmetric [A] as well as
from a poor inversion.

DESCRIPTION OF TECHNIQUE

The first operation in the inversion of [A] is to dzcompose
[A] (reference Subroutine DCOM1l) into triangular factors, that
is,

T
(a] = [u]” [v] (2)
where {U] is an upper triangular matrix. Then

(a1t

(w” )™

it (wi®)”

1t (1Y) ? (3)

The inversion of the upper triangular matrix, [U], 1s calculated
by Subroutine INV4.

(z]

it
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Subroutine INV4 inverts an upper triangular matrix. In matrix
notation the inversion is represented by

(2 = (Alay (L

where

{A] is the upper triangular matrix to be inverted,
[Z]} is the result (also upper triangular), and

N is the size of the matrices.
An inversion check is not calculated.

DESCRIPTION OF TECHNIGUE

That [Z] is upper triangular if [A] is upper triangular is
easily demonstrated by the following example. From [A] [Z] = [I],

aj;  ajz2  az] =211 212 z1;| 1 o 0
0 azy ax3] |z21 z22 223 =0 1 O
0 0 aij z31 LY z33 0O 0 1j.

Preforming the matrix product and equating like elements gives

(3,1 element) azz z3; =0

Because a33 # 0, . z3; = O.

(3,2 element) a3y 23, =0

Because a3z3 # 0 .. 232 = 0.

{2,1 element) ap; 23y + az3 737 =0

Because z3; = 0 and ajp # 0, & 25; = 0.



a1) 211

0

Yo
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The algorithm used to calculatz {[Z] is obtained by consider-

ing the equation [A] [Z] = [I] as shown below for size N = 4.

aj) 312
0 azs
0 Q
_P 0

a13

az23

a33

0

7
aly

axy

azy

3u

pe

211

0

By matrix multiplication

ay) 212 + a1z 222

az2 222

1]

0

212

222

ay; 213 + ajp 223 ¥ a13 233

a2 2z3 ¥ 323 233

a33 233

0

2)3 21J 1 0 o
223 ZoL 0 1 0
233 z3y 1o o 1
0 ZL,I,:J -9 0 o

-
31) ziy ¥ ay 224 + a1y 23w toa)y 2y
322 24 + 323 23w t oAz Zus

a3z z3y + a3y 2uy

ayy Zny

Equating elements of the matrices on the left and right side of
the equal sign gives

254

212

223

Z34

213

Z24

Z14

=

(]

‘/aii
- a2
2z}

a3

a3y

z33

(a12
(211
(az3
(z22
(a1

(211

(i =1,4)

z32/a1)

a)2 222

z33/ay2

az3 233

2y /a3

azy 2uy

z23 + ay3 233)/a1;

aj3 + 212 a23) 233

z3y + agy 24y) /a2

azy + 223 azy) 2Zuy

zyy + a13 23y + ayy zyyd)/a)y
ayy + 212 azy + 213 aiy) 2uy

0 o ﬂ
1 0 0
0 1 o
o o 1]
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From the above equations, the algorithm for the (i,j) element of
[Z) for size N is given in general as

Zii = -]./aii (i = l,N)

-t 1=1,N-1
2135 T 7253 ?: *ik %) (37 ;
=i

v i

(]
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Subroutine LTAPE lists the matrix headings (see Subroutine WTAPE
znd YWTAPE writeups) written on a FORMA tape (or disk). These
matrix headings were written by Subroutines WTAPE and YWTAPE and
consist of: .

NO. = Matrix number on tape,

RUN NO. = Run number of problem whern matrix was written on tape,
NAME = Matrix name;

NROWS = Number of rows of matrix;

NCOLS = Number cf columns of matrix;

DATE = Date when matrix was written on tape;

NNZ = Number of nonzeros (used only iv sparse FORMA when

only nonzeros are used);

PARTITION = Partition number of sparse matrix.
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Subroutine MASS1 takes (on option) distributed mass, distrib-
uted rotary inertia, and concentrated mass items of a beam and
replaces them with a mass matrix. The elements of the mass matrix
are representative inertial values of the beam at selected points
on the beam. These elements are calculated by assuming a linear
function between pairs of the selected points to describe the
beam's lateral elastic deflection.

The x-stations of the selected points (panel points) are
given in {PP}. These x-stations must be in increasing order.

The distributed mass, m(x), is assumed to be piecewise linear
and is represented by straight line segments as shown in Figure 1.
The x-stations of the end points for the line segments giving the
distributed mass are independent of the panel point x-stations.
However, *the distributed mass must be within the panel point lim-
its. The line segments representing the distributed mass may or
may not be joined and may overlap. The distributed mass is de-
fined in [DMASS]. Each rcw of [DMASS] represents one nonvertical
line segment. The form of each row of [DMASS] is [x; x, m; m;]
where x), m) give the first end point and x;, m; give the second
end point of a line segment.

m(x)

N T

Figure 1 Distributed Mass

The distrivuted rotary inertia, r(x), is also assumed to be
represented by straight line segments. All statements used above
lor distributed mass are applicable to distributed rotary inertia.
The distributed rotary inertia is defined ir [DRIN}. The forr of
each row of [DRIN] is [x; x, r; r;]. The end point stations x;
ard x; for the rotary inertia line segments are independent from
the end point stations x; and %, for the mass line segments.
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The concentrated mass items are defined in [CONC]. Each row
of [CONC] represents one concentrated mass item and contains:
1) X_» the station at which the 1tem is attached to the
beam;

2) MC, the mass of the item;

3) xcg’ the center of gravity of the item; and

c . . .
4) Icg, the momert of inertia of the item about its own

center of gravity.

These four elements are given in the form [x M x Icé]. The
a ¢ 'cg ¢

attachment station, x , of an item to the beam must be within the
panel point limits.

The calculated representative inertial values at the selected
panel points are placed in a mass matrix given by [Z] which is
symmetric and tridiagonal. That is,

1,1 A,2
22,1 %2,2 %2,3
23,2 %3,3  %3,4
[Z]nxn B z z z
4,3 4,4 4,5
zn-l,n-Z zn-l,n-l zn—l,n
L_ zn,n'l zn,n N
where z =z and n is the number of panel pecints. The gen-

i’j l)i
eralized coordinates associated with [Z] are lateral translation
at each of the panel points.

”
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The sign convention used in this paper to obtain the mass
matrix [Z] is shown in Figure 2.

‘lG

- x

<—

Figure 2 Sign Convention for This Paper

The beam mass matrix cbtained in this paper is applicable for
either the pitch, yaw, roll, or longitudinal plane with a change
of variables. For the axis system shown in Figure 3, the follow-
ing variables would be used:

Axis System of Figure 3
This .
Pitch Yaw Roll Longitudinal
Paper (z, x) (y, x) X, 0 (x)
(6 . x) ] ’ ’ x
X x X X X
8 b ) §
z v x X

m(x) m{x) a(x) ix(x) m(x)
r{x NA NA

(x) ty(x) rz(x)
M M M 1° M

c c c C,X ¢

cg cg ce

I Iy | Le,2 NA NA
NA = Not Applicable

M

<

—p —_—p
X

Figure 3 Beam Axis System (Right Hand)

X
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The beam's total mass, center of gravity, and moment of iner-
tia about the beam center of grw..ity are also calculated and
printed.

DESCRIPTION OF TECHNIQUE

The replacement of distributed mass, distributed rotary iner-
tia, and concentrated mass items of a beam by a mass matrix is
obtained using a kinetic energy approach as follows.

For small deflections normal to the longitudinal body axis
(x) of the beam shown in Figure 2, the kinetic energy is defined
by

X
E

T=4 s [m(x) 82(x,t) + r(x) éZ(X.t)] dx
X

S
£ [Mc 82(e) + 1B ég(u)] (1)

c
where

‘m(x) 1s the distributed mass,
r(x) is the distributed rotary inertia,

M is the mass of a concentrated item,

18 is the rotary inertia of a concentrated item about
€ its own center of gravity,

8 is the time rate of change of elastic deflection
normal to the body x-axis, referred to as lateral
velocity in this paper,

6 is the angtlar velocity about an axis yerpendicular
to the paper,

Ac is the velocity of a concentrated i:em and will be

explained later,
x 1s the undeformed longitudinal axis of the beam,
t is time,

%, is the starting x-station of the beam, and

S

Xg is the ending x-staticn of the beam.

The finite summation is over the nuiber of concentrated mass
items.
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The technique used heve to integrate Equation (1) is es-
sentially a modification of the Rayleigh-Ritz method. In the
basic Rayleigh-Ritz method the elastic deflection of a beam is
represented by a summation of assumed displacement functions each
weighted by a generalized coordinate representing the contribu-
tion of each of the assumed functions. Each displacement func-
tion is assumed over the entire beam lenp.' and considerable
skill is required to choose these functions. The modification
used here is to assume a simple displacement function between
consecutive panel points and to use the panel point displacements
as the generalized coordinates. A linear displacement function
will be assumed here. This is illustrated in Figure &4 where X,

and X4 are consecutive panel point stations. The region between

panel points k and k+l is referred to as bay k. The lateral dis-
placement between panel points k and k+l is given by

S(x) = 8y + (x - 1) (8 - 5k)/(xk+1 = %) -

Similarly, the lateral velocity 1is given by

§(a,t) = 8, (6) + (x - %) [5k+1(t) - ék(c)] /(xk+1 - %) (2)

The angular velocity is obtained as the geometric derivative of
the lateral velocity. That is,

BGxe) = - &%ﬁ T [ék+l(t) - ék(t)] /(xk+1 %) )

This equation for the angular velocity is slightly in error be-
cause a rotation due to shear deformation is included. A knowl-
edge of the stiffness distribution would be necessary to deter-
mine the relative contribution of bending rotation and shear
deformation to the angular velocity. This error will be small
for beam type structures and will be ignored.
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s 8 (x) k+1
K+l
. K
%
*x X1+l

Figure 4 Linear Displacement Function

The kinetic energy of distriited mass, distributed rotary
inertia, and concentrated mass items will be considered separately.
The distributed mass, m(x), is considered first. The geometry
for a line segment of distributed mass is shown below in Figure
5.

m(x)

mor=

i i
X} X2

Figure 5 Lire Segment Geometry

The equation for a straight line segment as shown in Figure
5 is

m(x) = my + (x = %17 (mp - my)/(x, - %1). 4)
Substituting Equations (2) and (4) into (1) gilves the “iqetic

energy of the distributed mass represented by one¢ line .agment
i in bay k as
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The subscripts p and q have been introduced to handle the possi-
bility of a line segment extending past the bay limits. Thus, xp

is the greater of x; or Xy

Similarly, mp is either mj or m

k+1’
and mq is either my or Mes]®

and xq is the lesser of x; or x

k
The integration is continued for the line segment in adjacent
bays, if necessary, until the entlire line segment has been used.
Performing the integration of Equation (5) yields

SR XCIENO) ri“ﬂ“n) :“"‘” Z“(t)(t) 6)
. k+1,k+ e+l
where

2k Fy - 2F, + F3 (6a)
2kl - F2 T F (6b)
Zirl, kbl T T3 (62)
F1 = L{m, ¥ )2 (64)

Fe = 1'r>|('"p Y (B, + Hg) + mp Hy + g HQ]/6 (6

Fj = Lpl(mp + ) (B * )2+ 2(m B2+ m, ué)l/ﬁz (6£)

Lp = xq - xp (6g)
Hp = (xp - xk)//Lk (6h)

hq = (xq - xk»/Lk’ and (61)

e T K T K, (64)

The kernel matrix in the triple matrix product of Equatior '6)
is the mass matrix that replaces the distributed mass repr..ented
by one line segment i in bay k.
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The kinetic energy of the distributed rotary inertia, r(x),
is considered next. The geom=tryv for one rotary inertia lin:
csegment is similar to that given in Figure 5 for distributed mass.
Similarly,

r(x) =r; + (x - x1) (ry - r1)/(xz - x1). ()
Substituting Equations (3) and (7) : to (1) gives the kinetic
energy ~f the distributed rotary ine:tia represcented by one line

segment 1 in bay k as

X

q -
Ti,k = ’/zf [tp + (x - xp) (rq - rp)/(xq - xp}j x
X
p
[- (ékﬂ(t) - ék("))/("ma - xk)] dx (8)

The subscripts p and q have similar meaning as has been previously
discussed for distributed mass.

Performing the integration of Equation (8) vields the san=
equation as was obtained previously for distributed mass. 1t is
repeated here as

- . [z z 8 t)
I, - '1'2[%(‘) %_l(t)] ok K, k+1 K 9)
? L(sym) z . § {t)
ktl,k+1f L “k+1f
Now, however,
= = + \ 2
zk,k 2)#1 1l Lp(rp rq[/2Lk (9a)
and
= = )
2 kbl T TGk (90
As before,
L =x -x (9¢)
P q p
and
Lk RS R (9d)
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The kernel matrix of Equation (9) is then the mass matrix that

replaces the distributed rotary inertia represented by one line
segment i i bay k.

The co :entrated mass items are considered last. These items
r- juire sow~ investigation because the item may be connected to
tire beam at an attach point a by an arm (assumed rigid) as shown

i~ Figure 6. The square of the velocity of concentrated item ¢
is

820 = [&a(c) - (x, - ) 6a(c)]2 + [néa(:)]z (10)

.
-

'& Elastic Deflection of
Beam Longitudinal Axis

- X

Figure 6 Concentrated Item Geometry

From Equation (1), using the velocity expression of Equation
(10), the kinetic energy for a concentrater item ¢ becomes:

T = %[Mc éi(c) - 2uc(xc - xa) éa(:) éa(c) + Mcﬁxc - xa)z + nz] ég(c) + 128 é:(:)]

(11)

where use has been made of the relationship that éc(t) = éa(t).

In further work, the offset D will be assumed to be zero. The
reason for thig 1is that any mass offset from the beam x-axis means
that the longitudinal principal axis of the beam does not coincide
with the beam x-axis. A coupled transverse-longitudinal analysis
would be required to accurately describe the kinetic energy of the
beam for D # 0. However, if the analyst wishes to include the ef-
fect of an offset D, inspection of Equation (11) shows that

Izg + Mc D2 could be used. With the above conditions, the kinetic

energy for a concentrated item can be expressed in matrix notation as
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) . M. -Mc(xc - xa) éa(t)
T = »[a (&) (c)] _ .
¢ “la a —Mc(xc - xa) Mc(xc - xa)z + Izg ua(t)

The lateral and rotational velocities at the attach point a are
given in terms of the velccities at adjacent panel points k and
k+l from Equations (2) and (3), respectively. Using these equa-
tions the kinetic energy of one concentrated item c in bay k is
finally given as

. . z z 8§ (t)
T =!‘Ek(t) 6k+1(tﬂ K,k K, k+1 &
’ ) (sym) 20y 1) Lo (82

where

2z F1—2F2+F3,

K,k
zk,k+l = F, - F3, and
Zi+l K+l P30

as were previously obtained for -‘istributed mass. Now, however,

Fl =MC,
Fp = M_H_»
Fy =M H24 Icg/iz, and
c c c b
H, = (xc - xk)/Lb'
As before,
L = *e1 ™ ¥

The terms in Eqiations (13a) and (13b) could be combined to give

a simpler exore:sion for 2k and zk,k+l'

to minimize coding instructions in the subroutine. The attach

point coordinate, X does not appear in any of the final equations

They are used, however,

12)

(13)

(13a)

(13b)

(13¢)

(13d)

(13e)
(13f)

(13g)

(13h)
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for 2, 1o etc. It is used only to determine the bay in which the
»

attach point is located. For an attach point coinciding with a
panel point, the inertial properties could be correctly calculated
using the coordinates of the panel point bay in front of the at-
tach point or the panel point bay in back of the attach point.

The results would be different, however, since the angular veloc-
ity is discontinuous at a panel point. To minimize numerical
roundoff error, the attach point is assumed at the beginning of
the bay.

The mass matrix for the entire beam is obtained by evaluating
Equations (6) for each line segment of distributed mass, Equations
(9) for each line segment of distributed rotary inertia, and
Equations [13] for each concentrated mass item. Every resulting
2x2 bay mass matrix is added to previous 2x2 bay mass matrices at
like panel points to form the mass matrix for the entire beam.

The total mass properties of the beam are calculated by the
following triple matrix product.

(8]

I T ! "1 PT

[{1} { {PP}] (2] [{1} . {PP}] = o
P 1

T T

where

{1} is a column of ones,

{PP} is a column of the panel point x-statioms,
[Z] is the mass matrix for the beam,
M& is the beam mass,

P; is the first moment of the beam about x = 0, and

Ig is the moment of inertia of the beam about x = 0.

From this data the center nf gravity of the beam is calculated
from

o
xc:g - P']'.’/ril‘
and the moment of inertia of the beam about xcg is calculated from

cgmo_ 2
IT IT MT xcg'
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SPECIAL CASES
Two cases are worthy of mention. In the first case, a lineur:)

varying segment of distributed mass extending to the bay limits
(xk and xk+l) has a mass matrix (from Equations (6) of:

metmeg M tmn

T
12 (sym) m + 3mk+l

In the second case, a uniform (i.e., mo= Mg - m) segment of

distributed mass extending to the bay limits (xk and xk+1) has a

mass matrix of:
m!xk+1 - xk? l% l]

6 (sym) 2
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Subroutine MASS2 takes (on option) distribuied mass, distrib-
uted rotary inertia, and concentrated mass items of a beam and
replaces them with a mass matrix. The elements of the mass matrix
are representative inertial values of the beam at selected points
on the beam. These elements are calculated by assuming a cubic
function between pairs of the selected points to describe the
beam's lateral elastic deflection. The x-stations of the selected
points (panel points) are given in {PP}. These x-stations must
be in increasing order.

The distributed mass, m(x), is assumed to be piecewise linear
and is represented by straight line segments as shown in Figure 1.
The x-stations of the end points for the line segments giving the
distributed mass are independent of the panel point x-stations.
However, the distributed mass must be within the panel point lim-
its. The line segments representing the distributed mass may or
may not be joined and may overlap. The distributed mass is de-
fined in [DMASS]}. Each row of [DMASS] represents one nonvertical
line segment. The form of each row of [DMASS] is [x; x; m m;]
where x;, m) give the first end point and x;, m; give the second
end point of a line segment.

m(x)

-

Figure 1 Distributed Mass

The distributed rotary inertia, r(x), is also assumed to be
represented by straight line segments. All statements used above
for distributed wass are applicable to distributed rotary inertia.
The distributed rccary inertia is defined in [DRIN]). The form of
each row of [DRIN] is [x; %, r; rp]. The end point stations x,
and x, for the rotary inertia line segments are independent from
the end point stations x; and x, for the mass line segments.
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The concentrated mass items are defined in [CONC], Each row
of {CONC] represents one concentrated mass item and contains:

1) X5 the station at which the item is attached to the
beam;

2) Mc, the mass of the item;

3) xcg’ the center of gravity of the item;

4) Igg, the moment of inertia of the item about its

own center of gravity.

These four elements are given in the form X Mc xcg Izg . The
attachment station, x_, of an item to the beam must be within the
panel point limits. '

The calculated representative inertial values at the selected
panel points are placed in a mass matrix given by {Z]. The form
of [2] is

o] L[

S P

where n is the number of panel points. Matrix {Z] is symmetric,
i.e., zij = zji' The partition form of [Z] results from the two

generalized coordinates (lateral t.anslation, §, and rotation, 6)
at each panel point arranged with all translation coordinates
first followed by all rotation coordinates. Each partition of
{2] is square and tri-diagonal, for example,

Z 4

1,1 1,2

%2.1 22,2 %.,3

F 2

3,2 %3,3
[fe.dl " -
nxn

Zn-1,n-2 %n-1,n-1  %n-1,n

Z z .
n,n-1 n,n

- -
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The sign convention used in this paper to obtain the mass
matrix [Z] is shown in Figure 2.

p

T

{ —a x

Figure 2 Sign Convention
for This Paper

The beam mass matrix obtained in this paper is applicable
for either the pitch or yaw plane with a change of variables and
possible sign changes. For the axis system shown in Figure 3,
the following variables would be used. Note that in order to
have a right-hand system such as that shown in Figure 3, the sign

of the [Zé 0] and [Z0 6] partitions of [Z] from this subroutine
would have to be changed for the yaw plane.
Axis System of Figure 3
g:;z: Pitch Yaw
]
(:S, x, 0) (23 X, ey) (y’ X, )Z)
x x x
[ §
4 y
0 B -8
y z
m(x) m{x) m(x)
r(x) ry(X) r,(x)
M M M
c 4 c
168 168 cg
c C,¥- Cy2Z
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}° /"(ey

4&:_‘ — X -——-——---8x

Figure 3 Beam Axis System (Right Hand)

The beam's total mass, center of gravity, and moment of iner=-
tia about the beam's center of gravity are also calculated and
printed.

DESCRIPTION OF TECHNIQUE

The replacement of distributed mass, distributed rotary iner-
tia, and concentrated mass items of a beam by a mass matrix is
obtained using a kinetic energy approach as follows.

For small deflections normal to the longitudinal body axis (x)
of the beam shown in Figure 2, the kinetic energy is defined by

X
E

T =1 I [m(x) §2(x,t) + r(x) é2(x,c)] dx +
X

S

A2 cg 22 ‘(1
> [Mc B2ty + 1 ec(:)] (1)
c
where
m(x) is the distributed mass,
r(x) is tkh ‘'istributed rotary inertia,
M 1is the mass of a concentrated item,
1°8 45 the rotary ilnertia of a concentrated item about
its own centexr of gravity,

6 is the time rate of change of elastic deflection
normal to the bocy x-axis, and is referved to as
lateral velocity In this paper,
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6 is the angular velocity about an axis perpendicular to
the paper,

A 1is the velocity of a concentrated item and will be ex-
plained later,

x is the undeformed longitudinal axis of the beanm,
t is time,

Xg is the starting x-station of the beam, and

Xp is ‘the ending x-station of the beam.

The finite summation is over the number of concentrated mass items.
The technique used here to integrate Equation (1) is essen-
tially a modification of the Rayleigh-Ritz method. In the basic
Rayleigh-Ritz method the elastic deflection of a beam is repre-
sented by a summation of assumed displacement functions each
weiguted by a generalized coordinate representing the contribu-
tion of each of the assumed functions. Each displacement func-
tion is assumed over the entire beam length and considerable skill
is required to choose these functions. The modification used here
is to assume a simple displacement function between consecutive
panel points and to use the panel point displacements as the gen-
eralized coordinates. A cubic displacement function will be as-

sumed here. This is illustrated in Figure & where X and X4l

are consecutive panel point stations. The region between panel
points k and k+l is referred to as bay k.

§(x)
5 k+1
K+l
, k
8, t,
L 1 x
*x X4l

igure 4 Cubic Displacement Function
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The cubic displacement function in bay k is determined as fol-
lows. The lateral displacement is given by

= - 3 - 2 -
s (x) A(x xk) + B(x xk) + c(x xk) +D
or
§(H) = aH3 + bH%+ cH + d
a
b
=W} H2 H 1] .
d (2)
where
H= (x - xk) /Lk (2a)
with
L = Xy~ % (26)
H 18 a local nordimensional bay coordinate to aic in the solution
of Equation (1). The angular displacement is obtained as the
geometric derivative of the lateral displacement. That is,
o B
0 (x) ax
or
e(H) = - d—ﬁﬁ)—
L dH
k
iz -m -1 o Q
= L - - - l )

k

a N oo



The coefficients a, b, ¢, d are determined as
tions (2) and (3).

s, ]

S+1

L 8

ke k

From whi

where

| M Ok

ch

(&

| 1

2
W2 H
2
Hin H
-2H, -1
My, -1
_
5, ]
§
e+l
= [y]

O
_ek+lJ
. o
2 oL, -l
3o, L
—Lk
0 0 0

|
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follows from Equa-

Thus the lateral and angular displacement in bay k is determined
in terms of the adjacent panel point lateral and angular displace~
Similarly, the lateral and angular velocity in bay k is

ments.
given by

S(H,t) = [u3

H2 H

1) (w1]é

(4)
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and

ék(t)

(-2 -21 -1 0] [v]] Ckn® (5)

k .
5, (6)

6(H, t) =

l"ll—-'

O (8

el -l

The previous expression for the angular velocity is slightly in
error btecause a rotation due to shear deformation is included.

A knowledge of the stiffness distribution would be necessary to
determine the relative contribution of bending rotation and shear
deformation to the angular velocity. This error will be small
for beam-type structures and will be ignored.

The kinetic energy of distributed mass, distributed rotary
inertia, and concentrated mass items will be considered separately.
The distributed mass, m(x), is considered first. The geometry for
a line segment of distributed mass is shown in Figure 5.

m(x)

mp b~ /
b

1 ]
X1 X2

Figure 5 Line Segment Geometry

The equation for a straight line segment as shown in Figure
5 1is

m(x) =m + (x - xy) (my - m)/(x; ~ x1),
or

m(H) = WH + my - WH, (6)
by using the nondimensional coordinate of Equation (2a) and

W= (m2 - ml)/(Hz - Hl)‘ (7)
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Modifying Equation (1) to use the nondimensional coordinate of
Equation (2a) and substitutiag Equations (4) and (6) gives the
kinetic energy of the distributed mass represented by one line

segment i in bay k as

H T
ék(t)

T (8) LI IFTCRRTURTE BT
Ti K -, -k"‘l (.J]T Lk J‘ . ) WH + mp - k’llp
’ "
0,(e) w oW oW
. P
Bppq () HY H¢ W 1

TR T

H
k(L)

e (®

"k(t)

rr ()

dH|[.)

(8)

The subscripts p and q have been introduced to handle the possi-

bility of a line segment extending past the hay limits.
is the greater of x

x (or H

p p)
of x2 or xk+l'
m,orm.,.

Similarly, mp is either m

1 or mk

Thus,

1 OF X and xq (or Hq) is the lesser

and mq is either

The integration is continued for the line segment in

adjacent bays, if necessary until the entire line segment has

been used.

ek A k+l k. kn
; . . . frluktl Pl e
Tik® klﬁk(t) Serr(B) B (0) B, () ki
(sym)
where
2k ™ Fy - 6F3 + 4F, + Py
2y o1 3F; - 2F, - P,
2y k+n (-Fp + 2F3 - Fy - Pp) L
ke knkl (Fy = Fy = P3) "
2yl kbl T P
Zy+l,k+n P2 Ly
Zyel,kbnrl = T3 Iy

Performing the integration of Equation (8) yields

2y ktn+l ik(‘)

2341, kn+l 1 ®

Ylan kantl | b0

Zantl koned | | e
(9
(9a)
(9b)
(9¢)
(9d)
(9e)
9f)
(9g)



Zy+n,k+n

Zp+n, kin+l

Zpntl, kr+l

(-ZFG + Fo ¢+ Fi1g)

=12F¢ + 4F; + 9F;g

-5F¢ + 2F7 + 3F)g

Ej (j =1, 7)

'

- xk. and

{T; - 3Fg + F; - Fg + 2F() Li

1

ate

K

2Fg - 7Fg + 2F7 - 3Fg + 6F)¢

J¥L g+
w(ﬂq N )/(J +1) +

o) (H?l - u-;)/ 3

") ("a ~ %)

n is the number of panel points.
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(2F5 - 4Fg + F7 + Fg = 4Fg + 4Fq) Lﬁ (9h)

(91)
(99)
(9k)
(92)
(9}
(9n)
(9p)
(9q)
(9r)

(9s)
(9t)
(9u)
(9v)

(9w)

1t is possible to simplify these equations for z since Fg = F3,

Fg = Fg, and F10 = Fs.

This was not done so that these same equa-

tions for z could also be used for distributed rotary inertia and
concentrated mass items and thus save coding instructions in the

subroutine.

The kernel matrix in the triple matrix product of

Equation (9) is the mass matrix which replaces the distributed
mass represented by one line segment i in bay k.
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The kinetic energy of the distributed rotary inertia, r(x),
is considered next. The geometry for one rotary inertia line seg-
ment is similar to that given in Figure 5 for distributed mass.
Similarly,

r(H) = WH + r; - WH;
using the nondimensional coordinate of Equation (2a) and
W= (rp, - r1)/(H; - Hy).
Modifying Equation (1) to use the nondimensional coordinate of
Equation (2a) and substituting Equations (5) and (10) gives the

kinetic energy of the distributed rotary inertia represented by
one line segment i in bav k as

T

3 X 3 2 3
6k(:) u 9Kk'  6H 3H i 1] Sk(:)
8, . (e) Qlesd 4wz 2 0 & ()
LAY Dl U —‘—[ [wa+r —Hﬂ]du O] M
, 8, () b Y G T S LI &, (&)
P
8k+1(t) 0 0 [+] Q ek ﬁ(:)

The subscripts p and q have similar meaning, as has been previ-
ously discussed, for distributed mass.
of Equation (12) yields results identical to Equations (9) thru
(9m) and similar to Equations (9s) thru (9w) as obtained previ-
ously for distributed mass. These equations will not be repeated

here. The differences from the distributed mass equations are:
Fj =0 (J=1,4
Fs = 3B3/L,
Fg = 6E4/Lk
¥, = 955/Lk
Fg = EyfLy
Fq = 2E2/Lk, and
Fig = 4E3/Lk.

The kernel matrix in the triple matrix product of Equatior (9) is
then the mass matrix which ieplaces the distributed rotary inertia
represented by one line segment i in bay k.

Performing the integration

(10)

11)

(12)

(13a)
(13b)
(13c)
(134)
(13e)
(136)
(13g)
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The concentrated mass items are considered last. These items
require some- investigation because the item may be connected to

the beam at an attach point a by an arm (assumed rigid) as shown
in Figure 6. .

- /Glastic Deflection of

Beam Longitudinal Axis

—
Figure 6 Concentrated Item Geometry

The square of the velocity of concentrated item . is
02 = - - _ . 2 - 2
i2(e) [sa(c) (xc xa) ea(c)] + [nea(:)] (14)

From Equatioﬁ (1), using the velocity expression of Equation
(14), the kinetic energy for a concentrated item ¢ becomes:

”a{“c 82(e) - M (x, - %) §_(t) b, (c) + Mcl(xc - 1)+ D2I6;(t) + 18 éj(t)}

(15)

where use has been made of the relationship that éc(t) = éa(t).

In further work, the offset D will be assumed to be zero. The
reason for this is that any mass offset from the beam x-axis means
that the longitudinal principal axis of the beam does not coincide
with the beam x-axis. A coupled transverse-longitudinal analysis
would be required to accurately describe the kinetic energy of the
beam for D # 0. However, if the analyst wishes to include the ef-
fect of an offset D, inspection of Equation (15) shows that

Izg + Mc D2 could be used. With the above conditions, the kinetic

energy for a concentrated item can be expressed in matrix notation
as

M -M (x - x ) 8 (t)
A . c cl’c a a
Tc = %[6a(t} 3a(t)] (16)

-Mc(xc - xa) Mc(xc - xa)z * Izg éa(t)
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The lateral and rotational velocities at the attach point a are
given in terms of the velocities at adjacent panel points k and
k+l from Equations (4) and (5), respectively. Using these equa-
tions and modifying Equation (16) to use the nondimensional co-
ordinate of Equation (2a), the kinetic energy of one concentrated
item ¢ in bay k is identical t. Equations (9) thru (9m) as ob-
tained previcusly for distributed mass. These equations will not
be repeated here. The differences from the distributed mass
equations are:

Fy =M (17a)
F, =M H, (17b)
Fy=H M (H -H) (17¢)
Fy = ni M, (3uc - 2ua) Q7d)
Fs = H2[M_H_(3H_ - ) + 312*’/1{] 17e)
Fg = 13 [u_ (3, - ) (- + 6123/Lil Q)
F; = WM (3uc - zua)z + 9123/L§| (17g)
Fg = M_ uf: + 123/1.{; (17k)
Fg = ua[nc H(H - H) + 212“/1.2] Qa71)
Fio = B [Mc (28, - B2 + 41’23/'1.2} : (173)
H = (xa - xk) /Lk R _ Q%)
H, = (xg - ka/Lk' and - Q7))

L = b1~ et {17m)
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The mass matrix for the entire beam is obtained by evaluating
- Ev.ations (9) thru (9w) for each line segment of distributed mass,
Eqaations (9) thru (9m), (9s) thru (9w), and (13a) thru (13g) for
gach line segment of distributed rotary inertia, and Equations

(9; thru (9m) and (17a) thru (17m) for each concentrated mass
item. Every resulting 4x4 bay mass matrix is added to previous

4x4 bay mass matrices at like panel points to form the mass matrix
for the entire beam.

The total mass properties of the beam are calculated by the
. fo. lowing triple matrix product.

{1} z{pp} T [266] i [Zse] 11} L eer] [ : P

(o]
T
N B A o] .0
(o y (14 L[zsa} T

“vhere

{1} is a column of ones,
{0} is a column of zeroes,
{PP} is a column of the panel point x-stations,

[2651 ~.c, are partitions of the mass matrix [Z],

MT is the beam mass,
P; is the first moment of the beam about x = 0, and
o

IT is the moment of iunertia of the beam about x = 0.

From this data, che center of gravity of the beam is calculated
from

-om 3



SPECIAL CASES

Two cases are worthy of mention.

of:
260m + 72m . Sém + Shm :
L T2m + 240m . |
840 |
(sym) |
| |
where

L = M1~ Xt

In the first case, a
linearly varying segment of distributed mass extending to the
bay limits (xk and xk+1) has a mass matrix [from Equation (9)]}

-@omk + 14mk+1)Lk
-(12mk + 14mk+l)Lk

,
(Lomy + 22m )Ly

(1t.mk + 30mk +1) L,
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In the second case, a uniform (i.e., mosm, s m) segment of

distributed mass extending to the bay limits (xk and xk+1) has.

a mass matrix of

156 54 | -221

k

I
t_n_Il 156 | -13L,
4200 — — — ;
|

(sym) |

where

131.k-1

22L

,

This last result agrees with Archer's consistent mass matrix for
a uniform (mass and stiffness) beam segment given in Reference 1.
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Subroutine MASS2A takes distributed mass of fluid in a con-
tainer and the slosh mass of the same fluid and replaces them with
a mass matrix. The mass matrix includes coupling between these
two types of masses. The elements in the mass matrix for the dis-
trivuted mass and the coupliny terms are representative inertial
valu~s at selected points on the beam. These elements are cal-
culated by assuming (1) a cubic function between pairs of the
selec.ed points to describe the container's lateral elastic de-
flection, and (2) a uniform motion of the fluid slosh relative to
the container's deflected longitudinal axis.

The x stations of the selected points (panel points) are given
in {PP}. These x stations must be in increasing order.

The distributed mass, m(x), is assumed to be piecewise linear
and is represented by straight line segments as shown in Figure 1.

n(x)

-

The x stations of the end points for the line segments giving the
distributed mass are independent of the panel point x stations.
However, the distributed mass must be within the panel point
limits. The line segments representing the distributed mass may
or may not be joined; however, there must not be any x voids or
overlaps. The distributed mass is defined in [DMASS]. Each row
of [DMASS] represents one nonvertical line segment. The form of
each row of [DMASS] is [x; x, m; m,] where x;, m; give the first
end point and x,, m; give the second end point of a line segment.
The x; of row 1 of [DMASS] must be equal to x; of row 2, etc.

Figure 1 Distributed Mass

To aid the analyst, the fluid level (FLEVEL) is input so that
[DMASS] can describe the complete container fluid. Only the
fluid from the fluid level to the container bottom will be used
in calculating the mass matrix. Another feature is that [DMASS]
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can be used to define the cross—-sectiunal area of the complete

container and the input scalar CONVRT used to define the fluid
density.

It is assumed that there is no distributed rotary inertia for
a fluid as there is for a structure.

The slosh mass (SMASS) of the fluid Is a value that is sepa-

rately obtained either from test or mathematical modeling tech-
niques.

The calculated inertial terms are placed in a mass matrix
given by [{2]. The form of [Z] is

[Z]2n+1,2n+1= .[26’6] i [Za,e] E{Za,sp

—— o —" ot — ——— — — — - —

where n is the number of panel points. Matrix [Z] is symmetric,
i.e., zij = zji' The partition form of [Z] results from the two

generalized coordinates (lateral translation § and rotation 6) at
each panel point arranged with all translation coordinates first
followed by all rotation coordinates. These panel point coor-
deinates are then followed by the single fluid slosh coordinate.

Each panel point partition of [Z] is square and tri-diagonal, for
example,

Z =
‘ a,s'nxn 21,1 21,2
2
2,1 2, 5 24
23,2 %3,3 Z%3,4

.

zn-l,n~2 zn-l,n—l zn-l,n

z z
n,n-1 n,n

1.
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The element Z
S,

s is the input slosh mass (SMASS).

The sign convention used ir this paper to obtain the mass
matrix [Z] is shown in Figure 2.

1

Figure 2 Sign Convention for This Paper

The mass matrix obtained in this paper is applicable for either
the pitch or yaw plane with a change of variables and possible

sign changes. For the axis system shown in Figure 3, the follow-
ing variables would be used.

Axis System of
This Figure 3

Paper Pitch Yaw
(6,x,0) (z,x,ey) (y,x,ez)

x X x

§ ) §
z y

9 9 -8
y F

m(x) m(x) m(x)
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Figure 3 Beam Axis System (Right Hand)

Note that in order to have a right-hand system such as that shown

T
in Figure 3, the sign of the [Z6 NE [ 6 6 ZB’S , and JZ s,6

partitions of [Z] from this subroutine would have to be changed
for the yaw plane.

The fluid's total mass, center of gravity, and moment of

inertia about the fluid's center of gravity are also calculated
and printed.

DESCRIPTION OF TECHNIQUE

The replacement of the distributed mass and the slosh mass of
fluid in a container by a mass matrix is obtained using a kinetic
energy approach as follows.

For small deflections normal to the longitudinal body axis (x)
of a container, the kinetic energy of the fluid in the container
shown in Figure 2 is defined by

*E i . .
T = -12-8 [mi(x) f‘,é(x,t) + m_ (x) (6c(x,t) + 6S(x,t))2] dx 1)

Xg
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where
mi(x) is the distributed inert mass of the fluid,
m (x) is the distributed slosh mass of the fluid,

5 (x t) is the time rate of change of the elastic deflec-
" tion of the container's longitudinal axis normal
to the body x-axis,

6 (x t) is the time rate of change of the fluid sloshing
motion relative to the container's deflected
longitudinal axis,

x is the undeformed longitudinal axis of the con-
tainer,

't is time,

Xg is the starting x-station of the fluid, and

Xp is the ending x-station of the fluid.

The distributed mass, m(x), is the sum of the distributed inert
mags and the distributed slosh mass, that is,

m(x) = mi(x) + ms(x).

SMASS

Define R =
MTOT

where SMASS is the slosh mass and is input to the subroutine,

and MTOT is the fluid total mass and is calculated in the sub-
ro: tine.
Assume that the distributed slosh mass and distributed mass vary
in the sawe ratio as the total respective masses, that is,

m (x)

Y R
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Then Equation (1) «an be written as

Xg ) . )
r=3| = [(1 - R) 620x,8) + R (8 (x,t) + as<x,c))2]dx. (1a)

Xg

The technique used here to describe the elastic deflzc*%ion
the container is essentially a modification of the Rayleigh-Rit.
method. In the basic Rayleigh-Ritz method the elastic deflectic
of the container is represented by a summation of assumed displace-
ment functions each weighted by a generalized coordinate represent-
ing the contribution of each of the assumed functions. Each dis-
placement function is assumed over the entire container length
and considerable skill is required to choose these functions. The
modification used here is to assume a simple displacement func-
tion between consecutive panel points and to use the panel point
displacements as the generalized coordinates. A cubic displace-
ment function will be assumed here. This is illustrated in Figure

4 where Xy and X, ., are consecutive panel point stations. The

region between panel points k and k+l is referred to as bay k.

§ (x
s | ) k+1
k+1™
k
6k__
| ! X
*x L]

' Figure 4 Cubic Displacement Function

The cubic displacement function in bay k is determined as follows.
The lateral displacement 1s given by
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= - g - 2 -
Gc(x) A(x xk) + B(x xk) + C(x xk) + D
or
ac(n)=au3+buz+cz ~d
= [H3 H2 H 1) [a
b
d (2)
where
H =.’(x - xk)/Lk (2a)
with
Lk = Xpp1 T Xt (2b)
H is a local nondimensional bay coordinate to aid in the solu-~
tion of Equation (1). The angular displacement is obtained as
the geometric derivative of the lateral displacement. That is,
o & (x)
o (x) = - —c
c X
or
d 6C(H)
6 (H) = ~ ———
c Lk dd
1 2
=7 (-3w?-m-10][- (3
K b
c

a.
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The coefficients a, b, ¢, d are determined from Equations (2) and
(3) as follows:

T ok w0
S+l Heal He B L|[P
N i ’3Hi -2H, - o{le
R I T WO 0 L4
From which A
BRI
b Sit1
c ek
A O1er1
where
wr=[2 -2 -1 -L]
-3 03 o, L
0 o0 - 0
) (1 90 o o |-

Thus, the lateral displacement in bay k is determined in terms of
the adjacent panel point lateral and angular displacements. Sim-
ilarly, the lateral velocity in bay k is given by

8. (H,t) = [H E2 B 1] [¥] |6, (t) (4)

Spa1 (V)

ék(t)

Le_k+1(t)

-t .
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The fluid sloshing motion, Gs(x,t), relative to the container's

deflected longitudinal axis is given as the product of a displace-
ment function, Es(x), and the slosh amplitude, As(t). A untform

displacement function, fs(x) = G, will be assumed here. The vaiue
of G will be determined later. The time derivative of the slosh-
ing motion is then

6s(x,t) =G As(t). (5)

Combining Equations (4) and (5) gives the total velocity of
the fluid as ’

5, (H,t) +6_(H,e) = [H3 B2 1 1 6] (V] Fék(z) (6)
ék+l(t)
6, (t)
ék+1(t)
XN
where
wi=[2 -2 - -1 0]
-3 3 ZLk Lk 0
0 0 —Lk 0 0
L__ 0 0 o

The distributed mass of the fluid will be considered next.
The geometry for a line segment of distributed mass is shown below
in Figure 5.
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n{x)
ma—
myp—-
i ] X
x) X2

Figure 5 Line Segment Geometry

The equation for a straight line segment as shown in Figure 5 is

n(x) = m + (x - x3) (mp - m;)/(x; - x1)
or

m(H) = WH + m; - WH, (7)
by using the nondimensional coordinate of Equation (2a) and

W= (m -m)/(H, - 4). (8)

Modifying Equation (la) to use the nondimensional coordinate of
Equation (2a) and substituting Equations (4), (6), and (7) eives

the kinetic energy of the distributed mass of fluid represented
by one line segment i in bay k as

H -~ - .
9 1) -1
N T - ’ q 6 5 s 3 3 1 - 1 ] &
°k(‘) [wT ij H H H B3 HIGR (wu + m th)dH (v] k(:)
" H 5 y 3 2 plen :
841 €E) plH H H H?  H/GK 8,41(0)
5,.(6) W #3 M2 H  HGR 6k(t)
. 9)
. 3 2 A
O] H H H 1 GR Cpe (V)
] 3 2 2 .
LAS(C) ] | HGR H2GR HGR GR G?R ] | 85(e) |
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The subscripts p and q have been introduced to handle the possi-

bility of a line segment extending past the bay limits.
x_ for H | is the greater of x, or X and x @r H ) is the lesser
P ( P 1 e\ q

Thus,

of xz or X4t Sirilarly, mp is either m1 or m, and mq is either

By OF Mea1’

The integration is continued for the line segment in

adjacent bays, if necessary, until the entire line segment has been

used. Performing the integration of Equation (9) yields
S e a0
Tk “215% | Pk Baitr Zokn Zkoksasl Zy, 2nb1 AL
) Tl bl Gibl it Skelktoel  Fkel, 2041 ‘§k+1(‘)
o) femitn Tcbakieti Tem,2enr | |
;Hx(" Tptntl kimbl  Skdntl,2nH ékﬂ("
2,02 (sy=) Zpnet 200t | | 3600
where
zk,k = Fl - 6F3 + 4FA + Pl
kel - F3 - X, - By
e kin - (F2 * 2P~ F, - Byl
Zetnrl - (F3 7 Fy - By
Zpel, k41 © T1
2141, kb - P2bk
Z)+l, kéntl - Dabk
= - F o~ 2
24 4n, ktn (F3 4F, + 6Fg 4F¢ + F7)Lk
= [- - 2
Zetn kbt (T4 * 35~ 3Fg + )l
= - 2
Zrntl, kintl (Fs 2Fg + F7)Lk
2y 204l © (Fl - 3F, + 2F4)GR
Zeal,2nel = (3F3 7 2F, )R

(10)

(10a)
(10b)
(10c¢)
(104)
(10e)
(10£)
(10g)
(10h)
(101)
(103)
(10k)

(102)
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Z)bn, 204 - (-Fz + 2F, - F4)Lk GR (10m)
Zrentl, 2nel T (F3 7 Fa4)li OR (10n)
2yl 204 = F1 O°R (10p)
P, = 9§ -12F + 4F, (10q)

P, = -3F, + 8F, - TF + 2F, (10r)

P, = 3F, - SF + 2F (10s)

3 775 7

5 = (w(ug"'l - Hgﬂ)/(j +1) +
(mp = ¥Hp) (Htjl - H;)/ j)Lk (10t)

o
|

W= (mq - mp)‘/(l-lq - Hp) (10u)
H, < (% - %) /Lk (10v)
Ho= (%g - xk)/Lk (10w)
L = X, = % and (10x)

n is the number of panel points.

G is determined as follows. Because 2z

2n+1, 20+l is defined to be

equal to the slosh mass, SMASS,

SMASS

G - - e——
RZFl

where the summation is over the number of segments giving the dis-
tributed mass of the fluid. From Equation (10t),

1
F. =< (x - x vV +V
1 2(q p)(p q)
which is the fluid mass in the inteval x to x . The summation

of Fl is then the fluid total mass, M R was previously de-

TOT®
fined as the ratio SMASS/MTOT. Therefore

G = 1. (11)
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The kernel matrix in the triple matrix product of Equation (10)
is the mass matrix that replaces the distributed mass of fluid
represented by one line segment i in bay k.

The mass matrix for the entire fluid is obtained by evaluating
Equations (10) for each line segment of distributed mass. Every
resulting 5x5 bay mass matrix is added to previous 5x5 bay mass
matrices at like panel points to form the mass matrix for the
entire fluid.

The technique just described was developed by Mr. Carl Bodley
and Mr. Herbert Wilkening.

The total mass properties of the fluid are calculated by the
following triple matrix product:

{1} E 331 & [zad] : [Zae] {1} | (ep} M, Py
| i =
TTTY T T T B B e
| o (o} o
(o) 1 -1} [z%] ! [Zee] (0} | -1} P01
where

{1} is a column of ones,

{0} is a column of zeroces,
{PP} is a column of the panel point x stationms,
[Zéé] etc., are partition of the mass matrix [Z],

is the fluid mass,

N
P; is the first moment of the luid about x = 0, and
I; is the moment of inertia of the fluid about x = 0.

From this data the center of gravity of the fluid is calculated from
0
xcg " PT//MT
and the moment of irertia of the fluild about xcg is calculated from

1,8 =10 - M

2
T T T xcg'
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Subroutine MODEl calculates the mode shapes and natural fre-
quencies of a structure using its mass and stiffness matrices.
The method of Jacobi is used in the solution of the general
eigenvalue problem

(AT Sl [y = [l T 9% gy 6y

where the mass matrix is given by [A], the stiffness matrix by
[S), and the size of the matrices by N. The mass and stiffness
matrices must both be real and symmetric. The mass matrix must
also be positive definite. The 1,1 element of the calculated

R . - . .th |,
diagonal matrix [ w® ] is the i circular frequency squared.

The corresponding mode shape is the ith column of [%]. Because
Jacobi's method is used, all mode shapes and frequencies are cal-
culated. The circular frequency squared, w?, the circular fre-
quency, w, and the frequency, f = w/2n, are output from the sub-
routine in increasing order of magnitude in {W2}, {W}, and {FREQ;,
respectively. The mode shapes are altered so that the first ele-
ment in each column is positive and normalized (automatically due to

Jacobi's method) so that {¢}$ [A] {¢}i = 1. Orthogonality checks

[ﬁ]T [A] [¢] and ['p]T {S] [+] are calculated and a summary of
these results is printed (on option).

DESCRIPTION OF TECHNIQUE

‘Consider a dizcrete coordinate model of a structural system
having N degrees of freedom. The undamped, free equations of
motion for small vibrations about a position of stable equilibrium
can be expressed in matrix notation as

(a]

(h(0) hy,y + (Sl (B}, q = {0y - (2}

NxN Nx1 Nx1

As before, [A] is the mass matrix and [S] is the stiffness matrix.
{h(t)} is a column of discrete coordinate displacements. The

time dependence in Equation (2) cun be removed by the transforma-

tion {h(t)} = iy} ert because the solutions of Equation (2) are
assumed to be harmonic in time. Thus, for a nontrivial solution,
Equation (2) becomes

(-w2[A] + (5]) {41 = {O}. (3)
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Equation (3) is recognized as a general eigenvalue problem of
order N with eigenvector {¢} (mode shape) and eigenvalue w
(circular frequency squared). There are N values of w' and {;}
so that the expansion of Equation (3) to include all solutions
can be expressed as "

2
w
2
wy
| | ! | ! ]
[a] [tody | Cody | oee | oy : = (s} l{cm | a3z ] ool oy
2
“N )
L .
or
(Al (o] T[w?d=1(s] [e]. (42)
Premultiplying by [A]”! gives
(a7t [s]  (e] = [e] [ w* (5)
as the eigenvalue problem to be solved in this paper. Jacobi's
method cannot be used directly on Equation (5) because even
though [A] and [S] are symmetric, their product in general is
not.

The first operation in the solution of Equation (5) is to
decompose (reference subroutine DCOM1) the mass matrix into tri-
angular factors, that 1is,

T .
[a] = [u]” [u] (6)

where [U] is an upper triangular matrix. Using [A]™! = ([U]T

-1
[U])'1 = [U]'l([U]T) and premultiplying Equation [5] by [U]
gives

-1
(tu1T) [s] [¢] = [U] [¢] [w?d. M

N
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Define

{ul fe]

—
< |
d
]

from which

[¢] = [u]™} [e].

Using the fact that ([U]T)—l = ([U]’l)T we get
[p] [T] = [F] [w?d

where

1 = (037" (s} (U1~

and is referred to as the dynamic matrix in the subroutine. Be-
cause the stiffness matrix [S]) is symmetric, [D] is symmetric.
Equation (10) is the eigenvalue problem from which the eigenvalues
[ w? ] and eigenvectors [3] are calculated by Jacobi's method
(reference Subroutine EIGN1), The product of equation 59) to
obtain the mode shapes [¢) is accomplished Ly using [U]'as the
initial eigenvectors in Subroutine EIGN1, thus eliminating a
matrix multiplication,

Two orthogonality checks of the mode shapes are calculated in
the subroutine 48 follows. First, a summary of the results of

[4»]T (A] [%] are printed. This calculation checks the orthogonal-
ity of the mode shapes on the mass matrix (i.e., {¢}§ [A] {;}j = O)

and the normalization (i e., {¢} [A] {¢}i = 1). Next, the results
of [¢] [S] [#] are compared wzth Cwld. (They should be equal.)

This cneck results from premultiplying Equation (4a) by [@]T

and assuming [¢]T (A} [¢) = [I]). Only the upper half of [A] and
[S] are used in the calculation of the mode shapes and frequencies
but all of [A] and [S] are used in the orthogonality checks. Thus,
errors in the checks can result from nonsymmetric [A] or [S].

(8)

(9)

(10)

(10a)
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Subroutine MODELA calculates the mode shapes and natural f{re-
quencies of a structure using its mass and stiffness matrices.
The method of Jacobi is used in the solution of the general
eigenvalue problem

(C[A]NXN + [S]NXN)-l [A]NXN [q)]NXN = [MNXN I\c :w2\| NxN W

where the mass matrix is given by [A], the stiffness matrix by
{S], the size of the matrices by N, and ¢ is a constant automat-
ically calculated in the subroutine. The mass and stiffness
matrices must both be real and symmetric. The mass matrix must
also be positive definite, The i,i element of the calculated

X . . - .th |
diagonal matrix z contains the i circular frequency

ctw
squared. The corresponuing mode shape is the ith column of [¢].
Because Jacobi's method is used, all mode shapes and frequencies
are calculated. The circular frequency squared, w“, the circular
frequency, w, and the frequency, £ = w/27, are output from the
subroutine in increasing order of magnitude in {W2}, {W}, and
{FREQ}, respectively. The mode shapes are altered so that the
first element in each column is positive and normalized (auto-

matically due to Jacobi's method) so that {¢}§ (Al {Q}i = 1.
Orthegonality checks [fb]T [A] [+] and [¢]T [S] [*+] are calculated

and a summary of these results is printed (on option),

DESCRIPTION OF TECHNIQUE

Consider a discrete coordinate model of a structural system
having N degrees of freedem. The undamped, free equations of
motion for small vibrations about a position of stable equilibrium
can be expressed in matrix notation as

(Al (h(E) D}y, + (8] th(e)dy,, = (0, - (2)

MNxN

As before, {A] is the mass matrix and [S] is the stiffness matrix.
{h(t)} 1is a column of discrete coordinate displacements. The time
dependence in Equation (2) can be removed by the transformation

{h(e)} = al¢} e?“" because the solutions of Equation (2) are as-
sumed to be harmonic in time. Thus, for a nontrivial solution,
Equation (2) becomes

(-w*[A) + [S]) (4} = {0}, 3)



| !
(Al o1y 1 {¢}y R {g} =
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Equation (3) is recognized as a general eigenvalue problem of
order N with eigenvector {¢} (mode shape) and eipenvalue w (cir-
cular frequency squared). There are N values of «~ and i;: so
that t.ue expansion of Equation (3) to include all solutions can
be expressed as

r .

%

or

(A) [¢] T/ d = (4a)
Adding c[A] [?], where ¢ is a constant, to both sides of the
equatlon results in

(cla) + [81)71 (A (4] = (4] I\——l——\]
c + w

as the eigenvalue problem to be solved in this paper.
stant, ¢, is calculated from

(5)

The con-

_ Norm (S
Norm (A)

where the Norm of a matrix 1s defined as the sum of the sbsolute
values of the elements of the matrix. Jacobi's method cannot be
used directly on Equation (5) because even though [A] and [S] are
symmetric, their product in ge 2ral is not.

The first operation in the solution of Equation (5) is to de-

compose (reference Subroutine DCOML) inte triangular {actors,
that is,

¢ (A + Is) = (01T [u] ()
where [U] 1s an upper triangular matrix.

Using (¢ [A] + [S])-l - [U]-l ([U]T)-l, premultiplying Equation (5)

by {U], and using a superscript on [¢] gives ([U]T)"1 [A) [;] -

(v) (8 T, 7y
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Next, we define

(3] = (U] (%] (8)
from which
) = 1t (3. (9)

- -1.T
Using the fact ([U1571 = ((UITH)T we get

(D] (¥) = [¥] [+ d (10)
where
(7] = (u™HT (Al (vt (10a)
and
= | —2 10b)
o8| [\C ey (

(D] is referred to as the dvnamic matrix in the subroutine. Be-
cause the mass matrix [A) is symmetric, (D) ims aymmetric, Equa-
tion (10) is the eigenvalue problem from which the eigenvalues
A ) and eigenvectors [¢] are calculated by Jacobi's method
(reference Subroutine EIGN1). The product of Equation ’,, to
obtain the mode shapes [¢] is accomplished by using (U1=] as the
initial eigenvectors in Subroutine EIGNl, thus eliminating a
matrix multiplication, The mode shapes [$] must be renormalized

because where [¢J]T {A] [¢] = [1] is wanted, we have [¢] [A) [¢]-
(A}, This last relation is obtained from Equations (10), (10a),
and (%) and using the orthon>rmal properties of [¢], that 1is,

[6]-1 = [5)T. The final renormalized mode 1. is obtained from

{6} = oy (11)
S e vel

The ith circulayr frequency squared,u)f, is obtained from Equa~
tion (10b) as )
RV e (12)

Two orthogonality checka of the mode shapes are calculated
(on option) in the subroutine as follows, First a suniary of the

results of [ﬁ]T [A] {¢] are printed, This calculation checks
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the orthogonality of the mode shapes on the mass matrix (i.,e,
{¢}I [A] {¢}J = 0) and the normalization (i.e. {¢}I (A] {¢}i =1).

Next, the results of [¢]c [S] [¢] are compared with [~w2d]).
(They should be equal,) This check results from premultiplying

Equation (4a) by [¢>]T and assuning [tb]T [A] [¢] = [1]. Cnly the
upper talf of [A] and [S] are used in the calculation of the mode
gshapes and frequencies, but all of {A] and [S] are used in the
orthogonality checks, Thus, errors in the checks can result from
nonsymmetric [A) or (S].
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Subroutine MODE1B calculates the mode shapes and natural fre-
quencies of a structure using its mass and flexibility matrices.
The method of Jacobi is used in the solution of the general eiger-
value problem

. 1
(Elyn Ay [y = 19); 1y [F] - @

where the mass matrix 1s given by [A], the flexibility matrix by
{E}, and the size of the matrices by N. The mass and flexibility
matrices must both be real and symmetric. The mass matrix must
also be positive definite. The i,i elerent of the calculated

diagonal matrix -—J is the reciprocal of the 1th circular fre-

quency squared. The corresponding mode shape is the i th column

of [¢). Because Jacobi's method is used, all mode shapes and
frequencies ace calcuiated. The circular frequency squared, w?,
the circular frequency, w, and the frequency, f = w/27, are output
from the subroutine in increasing order of magnitude in 1W2},

{W}, and {FREQ}, respectively. Rigid body frequencies and mode
shapes will be in the lact positions of {W2}, {W}, {FREQ}, and

{#]. This is because l"'2"will be calculated as zero (or a small
w

number due to computer roundoff error) corresponding to the rigid
body modes. The mode shapes are altered so that the first ele-
ment in each column is positive and normalized (automatically due

to Jacobi's method) so that {¢} A} {¢}i = 1. Orthogonality

checks [@] [A) [4] and [&] [A] [E] [a] [¢] are calculated and
a summary of these results is printed (on option).

DESCRIPTION OF TECH{'IQUE

Consider a discrete coordinate model of a structural system
having N degrees of freedom. The undamped, free equations of mo-
tion for small vibrations about a position of stable equilibriun
can be expressed in matrix notation as

(Al th(®))gq * (8]

{h(t)} = {0},

Nx1® (2)

NxN Nx1
As before, [A] i8 the mass matrix, [S] is the stiffness matrix,

and {h(t)} 1s a cclumn of Jiscrete coordinate displacements. The
time dependence in Equation (2) can b2 removed by the transforma-

tion {h(t)} = a{s} ejwt because the solutions of Equation (2) are
agssumed to be harmonic in time. Thus, for a nontrivial solution,
Equation (2) becomes
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(~w2[A] + [si) {¢} = {0}. 3)

Equation (3) is recognized as a general eigenvalue problem of
order N witn eigenvector {$} {mode shape) and eigenvalue w- (cir-
cular frequency squared). There are N values of »° and {¢] so
that the expansion of Equation (3) to include all solutions can
be expressed as

™ B
wi
i { ! i . i 1
(Al (e} : (o1, boees {ody " = [s] |{s}y ;,{wz beee (o)
. (4)
m2
L N
or
{A] [¢] T w?d = [S] [¢]. (4a)

Assume the structure is grounded so that the stiffness matrix is
nonsingular and its inverse exists. The inverse of the stiffness
matrix is defined to be the flexibility matrix, that is,

[E] = [s]7! (5)

Using t?is relationship in Equation (4a) and postmultiplying by
Cw?d gives

(E] [A] 6] = [¢] l‘i—zj )

as the eigenvalue problem to be solved in this paper. If the
structure is not grounded, the stiffness matrix, [S], is singular,
and Equation (5) is not applicable. The flexibility matrix, [E},
¢an still he obtained by other techniques (either directly or by
operation on the stiffness matrix) so that Equation (6) is still
valid. These techniques will not be discussed hete. Jacobi's
method cannot be used directly on Equation (6) because even
though |E]} and {A]} are symmetric, their product in general is not.
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» The first operation in the solution of Equation (6) is to
dacompose (reference Subroutine DCOM1) the mass matrix into tri-
_angular factors, that is

(Al = i’ ) a0

whare [U] is an upper triangular matrix. Next, we 'de_:ine
[7] = (U] [¢) | Y
from which
el = (U1~ (1. .

“Using these three equations in Equation (6) and premultiplying by
(U] gives | '

(0] (31 = (8] F2 1 10

where i ;
] = [v] (=) (Ut (102)

» |
Al = [\i'i'\] (10b)

[D] is referred to as the dynamic matrix in the subroutine. Be-
cause the flexibility matrix [E] is symmetric, [D] is symmetric.
Equation (10) is the eigenvalue problem from which the eigenvalue
[FA' ] and eigenvectors [¥] are calculated by Jacobi's method
(reference Subroutine EIGN1). The product of equation (9) to
obtain the mode shapes [¢] is accomplished by using [U]=l as the
initial eigenvector in Subroutine EIGN1l, thus eliminating a
matrix sultiplication., The 1th circular frequency squared wi,
is obtained from Equation (10b) as

2 1
1N
Two orthogonality checks of the mode shapes are calculated (on
option) in the subroutine as follows, First, a summary of the
results of IO]T [A) [¢] are printed., This calculation checks the

orthogonality of the mode shapes on the mass matrix (i.e, {¢}z [a)
{0}, =0)
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and the normalization (i.e {¢}§ [A] {¢}i = 1). Next the results

of [¢1T [A] [F] [A] [¢] are compared with [~1/w?_]. (They should
be equal.) This check results from premultiplying Equation (6) by

IQ]T [{A] and assuming [O]T [A] [¢] = [1]. Only the upper half of
[A] and [E] are used in the calculation of the mode shapes and
frequencies but all of [A] and [E] are usad in the orthogonality

checks. Thus errors in the checks can rasult from nonsymmetric
{A] or {E].
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Subroutine MODE1X calculates the mode shapes and natural fre-
quencies of a structure using its mass and stiffness matrices.
This subroutine is a modification of Subroutine MODEl to allow a
nonpositive definite mass matrix, remove orthogonality checks,
use w? convergence tolerance, w, f not calculated, and removal of
making first element of each mode positive. The method of Jacobi
is used in the solution of the general eigenvalue problem

(Algry [Slgey [9gey = (Pl Bo¥py [1)

where the mass matrix is given by [A], the stiffness matrix by
[S], and the size of the matrices by N. The mass and stiffness
matrices must both be real and symmetric. The i,i element of the

calculated diagonal matrix [w2] is the ith circular frequency

squared. The corresponding mode shape is the 1th column of [¢].
Because Jacobi's method is used, all mode shapes and frequencies
are calculated. The circular frequency squared, w?, is output
from the subroutine in increasing order of magnitude in {W2}.
Th2 mode shapes are normalized (automatically due to Jacobi's

method) so that {¢}§ [A] {¢}1 = 1.

DESCRIPTION OF TECHNIQUE

Consider a discrete coordinate model of a structural system

having N degrees of freedom. The undamped, free equations of
motion for small vibrations about a position of stable equilibrium
can be expressed in matrix notation as

[a] {h(t)} + [s]

{h(t)} {0}

NxN Nx1 NXN Nx1 - YINxas (2]
As before, [A] is the mass matrix and [S] is the stiffness matrix.
{h(t)} is a column of discrete coordinate displacements. The

time dependence in Eq [2] can be removed by the transformation

{h(t)} = a{¢} ejmt because the solutions of Equation (2) are
assumed to be harmonic in time. Thus, for a nontrivial solution,
Eq [2] becomes

(-w?[A] + [S]) {¢} = {0} . (3]

Equation [3] is recognized as a general eigenvalue problem of
order N with eigenvector {¢} (mode shape) and eigenvalue w”
(circular frequency squared). There are N values of w? and {¢}
so that the expansion of Eq {3] to include all solutions can
be expressed as



(A1 Loy} (o1 §on | (0l

or

[A] [¢] w2 = [S] [¢].

Premultiplying by [A]-1 gives

-1
(a1 (5] [¢] = [e] WA
as the eigenvalue problem to be solved in this paper. Jacobi's
method cannot be used directly on Eq [5] because even though [A]
and [S] are symmetric, their product in general is not.

The first operation in the solution of Eq [5] is to decompose
the mass matrix into triangular factors, that is,

T
{a] = {u]” [u]
where [U] is an upper triangular matrix. Modified statements from

Subroutines DCOM1 are used, that is the square-root of absolute
values are used. This allows for a nonpositive definite mass

matrix. Using [A]-1 = ([U]T [U])—l = [U]-1 ([U]T)—1 and pre-
multiplying Eq [5] by [U] gives

(uihH™ (s1 1e1 = (vl [o] M.

Def ine

(3] = (U] [o]

from which

(o] = [u3™t (31,

Using the fact that ([UID) L = ([u]™H)T we get
(0] [3) = [3] (WY

where

0] = (w1 ™HT s 7t

_ — MODE1X - 2/3

| |
= (] [fedy [ o)y 1-ne} (o]

(4]

[4a]

[5]

[6]

(7]

(8]

{91

(10]

[10a]
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and is referred to as the dynamic matrix in the subroutine, Be-
cause the stiffness matrix [S]) is symmetric, {D]) is symmetric.

Eq [10] is the eigenvalue prcblem from which the eigenvalues

tw?] and eigenvectors [¢] are calculated by Jacobi's method (ref-
erence Subroutine EIGN1A). The product of Eq [9] to obtain the
mode shapes [¢] is accomplished by Using [U]~! as the initial
eigenvectors in Subroutine EIGN1lA, thus eliminating a matrix
multiplication. :
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Subroutine MULT calculates the product of two matrices. In
matrix notation,

[Z)yraxnce = [Alyraxore [BlyrBxac
where NRB
. - i b i=1, NRA
ij Z ik °kj j =1, NCB
k=1

NRA is the number of rows of [A] and [Z). NRB is the number of
rows of [B] and the number of columns of [A). NCB is the number
of columns of [B] and [2Z]}. The number of columns of [A] must be
equal to the number of rows of [B].

Theorem: Multiplication of matrices is not commutative in gen-
eral. That is,

(Al(B] # (B][A]
for any values of aij

Theorem: Multiplication of matrices is associative. That is,

(a1 (tB11c1) = (1a1(B]) fcl,

and b, ..
1]

Theorem: Multiplication of matrices is distributive. That is,

[A] ((B) + [C}) = (Al[B] + [AllC].

EXAMPLE

Consider input of [A] = (1. 2.] and [B] = [ 7. =-8. 9.]
1x2 2x3
10, 11. 12,

The reader can easily verify the output to be

(z], .=1(1. 2.3 7. -8. o,
1x3 [10. 11. 12]

[27. 14. 33.].
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Subroutine MULTA calculates the product of two matrices.
This subroutine is a modification of Subroutine MULT to allow
larger matrix sizes by placing the answer [Z] in the same core
locations as [A]. In matrix notation,

(2] graxnce = [Alyraxvre [Blyrexncs
where NRB
. - i i =1, NRA
13 Z ik °kj § =1, NCB
k=1

NRA is the number of rows of [A] and [Z]. NRB is the number of
rows of [B] and the number of columns of [A]. NCB is the number
of columns of [B] and [Z]. The number of cclumns of [A] must be
equal to the number of rows of {B].

Theorem: Multiplication of matrices i< not commutative in gen-
eral. That is,

(a][B] # [B][A]
for any values of aij i

Theorem: Multiplication of matrices is associative. That is,

[a] ((B1c]) = (tal(B}) [cl.

and bi

Theorem: Multiplication of matrices is distributive. That is,

(al ((] + (c1) = (AJ(B] + {allc],

DESCRIPTION OF TECHNIQUE

To accomplish matrix multiplication using only two matrix
core spaces, an intermediate work space vector is used in the
subroutine. The size of this work vector determines the limi-
tation on the number of columns of [B] (i.e., NCB). The matrix
multiplication is accomplished as follows. A single row of [A]
is multiplied times the columns of [B]. These results are stored
in the work vector until all the columns of [B] have been used.
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The elements in the work vector then replace the row of [A] used
in the multiplication. This procedure is repeated for all the
rows of [A]. Schematically, the procedure can e represented by

[Ao) (] {work }T [A)]
vector
‘ l = w = Wyt
where [Ag] is the original [A], [A;] = [Z] is the answer.
EXAMPLE
Consider input of [A] = [1. 2.} and [B] =17 -8 9.
12 2x3 [10. 11. 12]_

The reader can easily verify the output to be
(2] = {1. 2.} 7. -8. 9.
13 10. 11. 12.

= [27. 14. 33.],
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Subroutine MULTB calculates the product of two matrices.
This subroutine is a modification of Subroutine MULT to allow
larger matrix sizes by placing the answer [Z] in the same core
locatione as [B]). In matrix notation,

(Z)yraxnce = [Alnraxnre [BlnrBxace

where NRB

I s b i =1, NRA
ij }E: ik kj j =1, NCB

k=1

NRA is the number of rows of [A] and [Z]. NRB is the number of
rows of [B] and the number of columns of [A]. NCB is the number
of columns of [B] and [Z]. The number of columns of [A] must be
equal to the number of rows of [B].

Theoren: Multiplication of matrices is act commutative in gen-
eral. That is,

(al{B] # [B][A]

for any values of a,

ij

and b,
i

5
Theorem: Multiplication c¢f matrices is associative, That is,
(a1 (Blrc1) = (1a1t81) [cl.
Theorem: Multiplication of matrices is distributive. That is,
[a] ((B] + [C)) = [Al[B] + [Al(c].

DESCRIPTION OF TECHNIQUE

To accomplish matrix multiplication using only two matrix
core spaces, an intermediate work space vector is used in the
subroutine. The size of this work vector determines the limi-
tation on the number of rows of [A] (i.e., NRA). The matrix
multiplication is accomplished as follows. The rows of [A] are
multiplied times a single column of [B]. These results are
stored in the work vector until all the rows of [A]) have been
used. The elements in the work vector then replace the column
of [B] used in the multiplication. This procedure is repeated
for all the columns of [B]. Schematically, this procedure can
be represented by
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[a] [Bg] {work } (8]

vector

where [Bj] is the original [B], [B;] = [Z] is the answer.

EXAMPLE

Consider input of [A]lxz = (1. 2.} and ',B]zx3 =1 7. -8. 9.1.
10. 11. 12,
The reader can easily verify the output to be

(zl. . =1(1. 2.1[7. -8 .
13 [10. 11. 12.]

= [27. 14. 33.].
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Subroutine ONES generates a matrix with each element

equal to
one. That is,
z =1 i =1, NR
1j ‘ j=1, N)
In matrix notation,
r -
[Z]NRxNC 1. 1. ... 1.
1. 1. .
| . . .. l;

where NR is the number of rows of [Z]; NC is the number of columns
of {2].



ONPRM

Subroutine ONRBM calculates erthenormal ricid body modes
HE .
[¢)y.nrpy £TO™ any rigid body modes t]y \o.. and mass matrix

[A]NxV' where N is the number of degrees of freedom and NRBM is

-he number of rigid body modes. The orthonormel rigid body modes
are orthogonal such that {¢}E[A]{¢}j = 0 (i#j) where {¢} is one

rigid body mode (a column) of [¢] and i, j refer to che column
number of [¢). The orthonormal rigid body modes are normalized
such that {¢}E[A]{¢}i =1,

DESCRIPTION OF TECHNIQUE

Perform the triple matrix product

(61T (AT (9] = [B]. (1)

Calculate the eigenvalues [ ? | and eigenvectors [E] of [B].
By definition,

[E)T[BIIE] = I A} (2)

or {B] = {E]"Tf A J[E]™}

n

()Tt /X 3t /A JIEI! (3)

Substitution of Equation (3) into Equation (1), premultiplying -y
[E]T, and postmuliiplying by [E] yields

OROEBINIGER R IR

] TroTra 1],
or [5][H[M MHMW]LKJ [1].

The orthonormal rigid body modes are then defined as

[6] = [¢](E] [/f J .




PAGEHD

Subroutine PAGEHD brings up a new page and prints a heading at
the top of the page. This heading consists of:

1)
2)

kY

4)
5)

6)

Run number;

Date;

Page number - Initialized as zero in subroutine START
and incremented by one each time Subroutine PAGEHD is
entered;

User's name;

Title Card 1;

Title Card 2.

Each of the above items was obtained in Subroutine START and trans-
ferred by a COMMON block labeled LSTART.



Subroutine PLOT1 plots points on a graph with linear x and y
axes. The x, y coordinates of the points are supplied to the sub-
routine in {XVEC} and [YMAT], respectively. Each cclumn of [YMAT]
is considered a separate curve with a maximum of three curves
allowed. On option (IFCURV = 1), the points are connected by
straight line segments. All curves will have the same y scale.

PLOT!



PLOT2

Subroutine PLOT2 plots points on a semilog or log-log graph,
and connects the points with straight line segments. The input
value of IPLOT determines the type of axes. IPLOT = 1 gives a
log x axis and a linear y axis, IPLOT = 2 gives a2 linear x axis
and a log y axis, IPLOT = 3 gives both log x, y axes. The x, y
coordinates of the points are supplied to the subroutine in {XVEC!
and [YMAT), respectively. Each column of [YMAT] is considered a
separate curve with a maximum of ten curves allowed. All curves
will have the same y scale.



PLOTI

Subrouctine PLOT3 plots points and connects the points with
straight line segments to produce (on option) a perspective view
or a stereo pair of a three-dimensional object. The x, y, 2 co~

ordinates of the ith point of the object comprise the ith row of
the input matrix [CLOC]. The points to be connected are specified
in [MLOC]. Interpolation is done if a point falls outside of the
cone of viston (usually abou: 60 deg) of the viewer.



PLOTSS

Subroutire PLOTSS selects the scale and calculates the top
and bottom values of a 1l0-step linear scale from the imput values
of the maximum and minimum values to be plotted. Each step (1/10
of the total scale) will have a value of .5, 1, or 2.
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Subroutine PSD1 calculates power spectral density response and
variance due to a power spectral density forcing functien. The basic
equation is given in the frequency domain as

(-2 [u]+ iw o]+ []) te}={rt o (1)

where M is the mass matrix
D is the damping matrix
K is the stiffness matrix
F is the force distribution

u is the force variation

The response {q(w)} could be obtained from

fart = (- [i] + e [o] + [] )P hrpues @

The disadvantage of this approach is that a complex matrix inversion
must be performed for each w used. Because each matrix inversion re-
quires much computer time, the approach of equation (2) is not used in
this subroutine PSD1l. Rather, the following approach used.

The second order differential equation can be put into an equivalent
first order differential equation given as

RICTY I I L el 1 e )t | B R ECTT I [ 3 ;F_}]

{ae)] L[] faol] | o} |

The response is expressed in terms of numerator and denominator containing
products of first and second order polynomials permitting rapid evaluation
at many e, Calculation of the complex roots uses considerable computer
time but this technique is still faster than the technique of equation

(2) when solutions at many e are sought.

Define [A*] = |=-- -[I-] -- -i- - —[(-)]- - = (2a)
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{z(vf = A (3b)
{a(t)}
-1
{v} = -[Ml —{Ii-}- (3c)
{o}
to give { 2(t)} = [A*] 12(0)} + {b] u(®) @

The system characteristic matrix [A*] provides the basis for evaluating
the resonant characteristics (natural frequencies) of the system des-
cribed by matrices [M] , [D], and [X] .

Taking the Laplace transform of equation (4) gives

[[Is] - [A*]] {z)} =1b} u(s) (5)

Employ Cramer's Rule to evaluite the pth element of {Z(s)} due to an
input u, that is

Zp(s) _ Aug|Is - axl

o) [Is - &%| (6)

where Aug IIs - A*|is accomplished by placing{ b} into column p of
|Is - A*| .

It is desired to evaluate both the numerator and denominator roots
of equation (6). The Q-R algorithm (Reference J.G.F. Francis, 'The QR-
Transformation - A Unitary Analogue to the LR-Transformatioan", The Com-
puter Journal, Volume 4, October 1961, (Part 1) and Volume 5, January
1962 (Part 2).) is a useful tool to extract the roots of the complex
system and is used here.

The denominator root extraction is straight forwdard in that we wish
to find py, p2, P3s -+ Pp from an expression of the form

D(s) = det (rx] : - [m]) Q

such that
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D(s) = (s - py) (5 - py) «.. (s - p)
N
=TT - 0p - ®)
i=1

This evaluation is made by extracting the characteristic roots of the

matrix [A¥] . In general, these roots will be complex because [ A*] is
not symmetric.

The numerator root extraction is more complicated in that the
augmented matrix can very easily have a zero pivot element from{ b }.
Thus, the null pi's are eliminated from the expression giving the char-
acveristic polynomial of orcer n less than N. It is a rather common
occurence for the number of zeroes (order of the numerator N(s)) to be
less than the number of poles (order of the denominator D(s)). The
numerator expression N(s) can be written as

n
Nl ] Ge-sp ®

i=1

where the numerator root gain is
n
= (DY py det |[& - 'i‘x| (10)
i=l

T is the identity matrix of size N with a null diagonal element. Axis
the A* matrix with a negative column of {b} in the pth column; and the
Bode gain for the numerator is

m

k'B = kR -n" TT sy where m < n. (11)

i=1

Transfer function poles, zeros, and root gain can be converted to
the standard Bode form for frequency resp nse by combining time con-
stants (r), damping ({) and resonant frequencies (w} as
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N N
_ 1 - 2 2¢. s s2
s T (1L + 7, s) T 1+ . +;—2
i= i=1 i
T=ky —y T - (12)
- _— 2% s SZ)
T 1+ 75 s) 1+ oy + :—2'
i=1 i=1 j
vhere the composite Bode gain is
n
zi
_ i=1
T 13
Pj
i=l

z; is a root of the numerator and, Pj is a root of the denominator.

The frequency response is then calculated by substituting je for s and
evaluating the transfer function expression (that is Zp(s)) at various
@ . In this subroutine the first and last « and the number of « wanted
is specified by the user.

The additional equations are obtained from
frof = [m] s} + [m] e +'[pc] {a(o} + { D}

or {L(w)} = (-mz [2a] + 1. [38] + [cc]) <{qR(w)} - {ql(..,);)+ {00}

which can be spli¢ iuto real and imaginary parts as

(<2 ] [ee] ) faaeot =[] fogcort + oo

(o] [o] )t + o] togco

Note that (q(u)} (real, imaginary) is the second half of {Z(m)} , see
equation (3b).

{Lg ()}

{1 @)}
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Although the modal response is calculated for each modal coordinate
in turn for many frequencies, the need in the calculation of the addi-
tional equations is for all of the modal coordinate responses at each
frequency in turn. To avoid extensive tape reading, it was decided to
place the modal responses into core for the additional equations cal-
culation. Although this limits the number of frequencies that can be
used, the loss in accuracy in calculating the variance should be minor.

A constant step size between a specified minimum and maximum fre-
quency is used. Because the area under the PSD-frequency curve (variance)
is the final result, using a constant frequency step size gives a reasona-
ble result even though some individual peaks may be missed.

The PSD of the additional equations (at one station here) is given
by

2
L(») = H(®) u(w)

vhere H(s) = Li(w) + 12

and u(«) is the PSD-w variation of the forcing function {F ! . The PSD-w
variation is given in the input by TABF, TABW.

The variance of the additional equation is

2 1 (°
L" = o L(») do
.

The square root of the variance (or mean square response) is the standard
deviation. Printout (on option) in the subroutine includes:

Q) - &% - = [A*] = |awlp)awlx

(2) BCOL = { b}
(3) R AR gives the real and imaginary parts of the roots of [A*] .
RART gives the real and imaginary parts of the roots of [A*]

transpose.

(4) RRED (printed in subroutine PSD1)



RRED(1l) is
RRED(2) is
RRED(3) is
RRED(4) is
RRED(5) is
RRED(6) is
RRED(7) is

the
the
the
the
the
the
the

nucber
number
number
number
number
number

of
of
of
of
of
of

Bode gain
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rumerator reals

numerztor complex pairs
numerator Zzeroes
denominator reals
denominator complex pairs
denominator zeroes

(Gp),

Based on the values of the first six quantities, come numerator
time constants (7), damping ({), and resonant frequencies (v),
followed by denominator time constants, damping and resonant
frequencies.



PUNCHO

Subroutine PUNCHO punches a matrix of octal numbers onto cards
without round-off error. Octal representation of the matrix ele-
ments 1s used because it gives an exact replica of the binary num-
ber used by a digital computer. A decimal representation will
not give an exact replica. The matrix on punched cards is to be
used only as an emergency backup for the matrix written on a
storage tape.

This matrix on cards is compatible with the input form for
Subroutine READO. A group of up to three consecutive elements
from a row of “he matrix are punched on each card. If all of the
elements of a group are zero, punching of this card is suppressed.

The first card punched contains the matrix name (in card
columns 1-6), the matrix row size (in card columns 7-10), and the
matrix column size (card columns 11-15). This is followed by the
matrix data. On any card of the matrix data the first integer
number (card columns 1-5) is the row number of the matrix elements
on that card. The second integer number (card columns 6-10) is
the column number of the matrix element in the first data field
(card columns 14-25). The next group contains octal numbers (up
to three numbers in card columns 14-25, 29-40, 44-55) that are
the values of the matrix elements. This group of matrix elements
is given in consecutive column order. The last card punched con-
tains ten zeroes in card columns 1-10 to indicate the end of the
matrix.



= -
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Subroutine RBTGl calculates a rigid body trarsformation
matrix, [ RBT ], such that

*Q} = [RBTJ *q}REF

where ?q} is displacements at selected points on a structure,
and iq REF is displacements at a reference point. The cartesian
coordinates (x, y, z) of the selectca points are given by the
input matrix [XYZ1 . Each row of [ XYZ Jhas the x, y, z coor-
dinates cf one point. The x, y, z coordinates of the reference
point are given by [ XYZREF] . This reference point need not be
one of the points given in [XYZ] . A matrix of integers, [ JDOF
is also input to this subroutine to define the degree of freedom
number of the displacement of each point. This degree of free-
dom number will define the row number of the degree of freedom
in [RBT] . Each of these degrees of freedom ar» assumed to be
in the same direction as its corresponding reference degree of
freedom. A negative value in [ JDOF ] indicates a relative (ver-
sus absolute) degree of freedom (e.g., slosh, modal). The nega-
tive value will cause that row of the resulthu;fRBTJ matrix to
be zero. A row of integers, [JVEC], is input to define the
degrees of freedom associated with the reference point. Negative
signs on{JVEC] enables change from assumed right hand system to
one you wish to specify. Use of these matrices will be illus-
trated in the example problem.

DESCRIPTION OF TECHNIQUE

The translation (b, dy, 6;) at the ith point is given in
terms of the translation (d,, dy> 6,) and rotation (0, oy, 6,)
of the reference point by the vector equation

61 = 6R + 0R pY Vi

-
where Vi is the vector from the reference point to the ith
point. All vectors are in terms of x, y, z components.

The rotation at the ith point is equal to the rotation at
the reference point, as shown oy the vector equation

-t

-
ai = 0R.
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A typical rigid body transformation for the ith . point is
size 6x6 and looks like

— | o
Ca\ |- lo. v, -y (6X\,
|
6)’ 1. =-VZ O. VX ay /
5, | 1. : vo-v, o 5,
Ox |I 1. OX >
9 ‘ 1
Y l By
| !
9 1 1. . 0 }
\ 2) i — lk 2/ v

where
VX = the x component of the vector disZzance irom th=
reference point to point i,
V_ = the y component of the vector distance from the
y reference point to point i,
Vz = the z component of che vector distance from tha

reference point to point 1i.

The vector distance is cal .ulated by using the it row of the
matrix [XYZ] and the vector [XYZREF] , e.g., Vy i = X¥Z (i, 1)-
XYZREF(1). Using the Forma Subroutine REVADD, the 6x6 formed
above is then "revadded" into the output matrix [RBT] . The
IVEC required for REVADD js formed from the ith row of the in-
teger matrix EJpor] , and sign modified by the corvesponding
signs of the values in JVEC. The JVEC required for REVADD uses
the integer vector CJvEcd .

EXAMPLE

A rvigid body transformation will be calculated for the
beam as shown in the sketch below that will express the rigid
bcdy motions of the 15 dof in terms of node porint 1 (the refer-
ence point).
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Node 1 = 6 dof
Node 2 = 3 dof
Node 3 = _6 dof

15 dof

Input data:

[XYZ] = A matrix of size NNODES (number ¢’ nodes) x 3 used
to describe the coordinate locations of the node
points.

y z
Node 1 0. 0. 0.
Node 2 5. 7. a.

Node 3 10. 14, 12,

[XYZREFJ = A vector of size 3 used to describe the coordinate
location of the reference point. The reference
point is assumed to be Node 1.

X y z
Reference [0. 0. 0.]
[JDOF] = An integer matrix of ' ‘.e NNODES x 6 used i. des-

cribe the degree-of-~  dom table. In this example.
there are no @ deg: ':¢ f freedom at Node 2.



6x
Node 1 1
Node 2 7
Node 3 10

11

12

13

0
14

RBTG1--4/ 4

15

L JVEC] = An integer vector of size 6 used to define the
degrees-of-freedom of the reference point.

ox

[

Reference

by

2

5z

3

ax
&

Using the above input data, the rigid bodyb transformation
matrix, [RBT], is calculated such that

{abys = [B8T] 5 ¢ {9rertes -

That is,
-
(- L. I
X
6y 1. I
s, "
. | .
8 I 1.
y |
ez Node 1 —_ Jl —_—
6x 1. I 0. &b.
5y = 1. ‘ -6. 0.
éz Node 2 l’l 7. +5
|
Gx 1. | 0. -12.
Gy 1. I-12. 0.
éz 1.{ 14. +10.
o Io1.
0, : 1.
0
| z Node 3_} i I

REF
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Subroutine RBTIG2 calculates a rigid body transformation
matrix, {RBT] , such that ' -

{a} = [Ro1) {algep

where

{q} = displacements ( 8, 8y, 8, Oy, Or, 9t) at selected
points on a structure :

and

{q}REF = displacements ( 8y, Sy, 8, Oy, bys 6,) at a
reference point.

The following sketch is useful for identifying the variables
involved.

JPOINT "i "

+Z
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The cylindrical coordinates (x, r, ¥) of the selected
points are given by the input matrix [XRT] . The ith row of
Duuﬂ has the x, r, ¥ coordinate of the i th point. The x, y, 2z
coordinates of the reference point are given by the input na-
trix [XYZREF] .

The reference point need not be one of the points defined
in (XRT] . A matrix of integers, DDOIﬂ , 1s input to the
routine to define the degree-of-ireedom number of the displace-
ments of each point. This degree-of-freedom number will define
the row aumber of the degree-of-freedom in [RBT] . A negative
value in EVDOF] indicates a relative (versus absolute) degree
of freedom (e.g., slosh, modal). The negative value will cause
that row ~f the resulting [REﬂ matrix to be zero. A row of
integers, [?VEC , 1s input to define the degree-of-freedom
associated with the reference point {i.e., the columns of
[?BJﬂ). Use of these matrices will be illustrated in the
example problem.

DESCRIPTION OF TECIHNIQUE

A cartesian rigid body transformation is formed first.
The translations ( 8y, 8y, 8;) at the ith point are given in
terms of the translations and rotations ( 8, 8y, 8z, 0y, By, é.)
of the reference point by the vector equation

8. = R & *V;

where V: is the vector from the reference point to the i-
point. The rotations at the ith point are equal to the -
tions at the reference point as shown by the vector equatica

0. = 0,
1

R'

A typical cartesian rigid body transformation for the jth
point is size 6x6 and looks like
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(1 [v Yoo v v ][s]
L * ‘: : z y 6y
1. I -v 0. V
8? i 2 X 8y
| J
82 L 1. { Vy -\x 0. 5,
Yoo (1)
0y y 1. Oy
|
1.
Oy : by
l
(] 1.
z | i é
" ” L \"2Jd orp
where
Vx = the x component of the vector distance from the
reference point to point "i",
= XRT(i,1) - XYZREF(1l)
V_ = the y component of the vector distance from the
Y reference point to point “i',
= XRIT(i,2)%xcos(XRT(i,3)) - :TZREF(2)
Vz = the z component of the vector distance from the

1. n

reference point to point i,

XRT(i,2)%sin(XRT(i,3)) - XYZREF(3)

Equation (1) may be written in matrix form as

*qcart}i - [Izli {qcart}REF' (2)

It is now desired to transform {qcartii from cartesian
coordinates to cylindrical coordinates. This may be done by
using a simple rotation transformation such that
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rooN - A
w] [T | (s,
c s |
5, I 8y
N s TEEE - o
o | B! 8 ]
x | 1%x
| .
0, : c s 6,
atJ . e l -S (:—J »0ZJ
- 1 .
i
where
c =cos¥ = cos (XRT(i,3))
s = sin ¥ = sin (XRT(i,3)).
Equation (3) may be expressed as
iqcyl'i = [Ti] *qcart}i (@)
Substituting equation (2) into equation (4) yields
<tqc:}'l}i = [11] [12] {qcart}REF
= [RBTJi {qcart}REF (5)

Using the FORMA Subroutine REVADD, the resultant 6x6
formed in equation (5) is ''revadded" into the output matrix
[RBT] . The IVEC required for REVADD is formed from the ith

row of the integer matrix [JDOF] , and the JVEC required uses
the integer vector [JVEC] .

EXAMPLE

A rigid body transformation will be calculated for the
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ring, as shown in the sketch below, that will c¢xpress the
rigid body motion of the 18 DOF's in terms of the refercnce
point.

+X
Node 1 = 6 DOF
2 Node 2 = 3 DOF
Node 3 = 6 DOF
3Q>1 Node & = _3 DOF
18 DOF

4 |

|

! . prl
S
10,00 1. 1 +z

Ring Geometry:
X = 100.
Diameter = 180.
¢ Node Points 90. Degrees
Apart

Input date:

(XET] : A matrix of size NNODES (number of nodes)x3, uscd
to describe coordinate locations of the node

points.
X r ¥
Node 1 100. 9. 90.
Node 2 100. 9. 180.
Node 3 100. 90. 270.
Node 4 100. 90. 360,

[XYZREEJ ¢ A scalar vector of size 3 used to describe the
coordinate location of the reference point.

X y z
REFPT  [30. 0. 30.]

[JDOE] ¢ An integer matrix of size NNODESx6, used to
describe the degrec-of-freedom table. In this
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example, there are no rotational degrees-of-
freedom for node point 2 and no translational
degrees-of-freedom for node point 4.

DOF

Node 1 1 -2 3 4 6
Node 2 7 8 9 0 0 0
Node 3 {10 11 12 13 14 15
Node & 0 0 0 16, 17 18

[JVEC] : An integer vector of size 6, used to define the
degrzes-of-frcedom of the reference point.

X
Reterencc Point [ 1 2 3 4 -5 6]

Using the above input data, a rigid body transformation matrix
[RBT% , is calculated such that

ahiaxr = [RBU g06 f‘l}mﬂ-‘ﬁ
x]1
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Subroutine READ reads a matrix of real numbers (a Fortran
term for numbers with a decimal point) from either cards or tape
into the computer. The matrix is then printed so that these in-
put data are recorded with the answers of a run. A print sup-
pression option is available for a matrix read from tape. On
option, the matrix read from either cards or tape may be written
on a tape (by Subroutine WTAPE).

The first data card read by Subroutine READ contains the in-
formation to indicate whether cards or tape will be used. The
information entered on this card (and subsequent cards for card
input) is given below. ‘

Card Data Input Form

Required entries are denoted by an * symbol below. Any other
entry is optional

Card Format
Columns Type (1) Entry

First Card 1-6 A *Matrix Name. Will appear
in printout.
7-10 1 *Matrix Row Size.
11-15 1 *Matrix Column Size.
16-69 A Any remarks to further iden-
— tify the input matrix.

72 $. Only if the Write-Tape
is to be initialized by Sub-
routine INTAPE. The Write-
Tape identification will be
from card columns 73-78.

72 or Anything other than $ is the
Write-Tape is not to be ini-
tialized.

73-78 A The Write-Tape identification.
(e.g., T1234). Use with $ in
card column 72.

73-78 or REWIND. The Write-Tape will
be rewound befors being used.

713-76 or LIST. The Write-Tape will be
listed by Subroutine LTAPE
after the matrix has been
written on the Write-Tape.

73-78 or Anything else will be ilgnored.

79-80 1 The Write-Tape Number. (e.g., 21).

or Blank 1f tne matrix is not to

be written on tape.

Write-Tape Options
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Card Format
Columns Type (1) Entry
Middle Cards 1-5 1 *Row Number of matrix elements
on card.
6-10 1 *Column Number of matrix ele-
ment in first data field.
11-27 E *First data field with matrix
elements. (2)
28-44 E *Second data field with matrix
E elements. (2)
45-61 E *Third data field with matrix
elements. (2)
62-78 E *Fourth data field with matrix
elements. (2)
Last Card 1-10 1 *Ten zeroes.

Ncte (1) Format Type A allows any keypunch symbol.
Format Type I allows only integer numbers right justified
in the field. Format Type E allows only real numbers
(a Fortran term for numbers with a decimal point) any-
where in the field.

Note (2) Only nonzero elements need be entered.

As an example of card input to Subroutine READ consider the
following matrix:

[Al*C]3x6 = 1. 0. 3. 0. 6. 5.

This matrix is also to be written on tape number 21 that is to

be initialized and identified as T4334., Figure 1 demonstrates
how this information could be written on a coding form to facili-
tate keypunching to cards.
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Tape Data Input Form

Required entries are denoted with an * symbol below. Any
other entvry is optional. Only one card is used for each matrix
read. : :

Card Format
Columns Type (1) Entry
One Card 1-6 A #Name of matrix to be read
from the Read-Tape.
10 Zero. The Read-Tape will

move forward from its present
position and search to the
end of the tape. If the
matrix is not found upon the
first end-of-tape encounter,
the tape will automatically
rewind and make one more
pass. If it is not found on
the second end-of-ta e en-
counter, an error message
will be printed and the pro-
gram will stop.

7-10 1 or Minus the location number of
matrix on the Read~Tape. Tape
will be positioned at the be-
ginning of the location speci-
fied and then continue as
described above for a zero
in column 10.

11-15 1 *The Read-Tape Number. (e.g., 11).
1f positive, the matrix read
will be printed in the output.
if negative, the matrix read
will not be printed in the

output.
16-21 A *Run number of matrix to be
read from the Read-Tape.
22-27 REWIND. The Read-Tape will
be rewound before being used.
22-25 or LIST. The Read~Tape will be
listed bty Subroutine LTAPL.
22-27 or Auything else will be concid-

ered as part of the remarks
described below.



Write-Tape Options

Note (1)
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Card Format
Columns Type (1) Entry
28-69 A Any remarks to further iden-
: tify the input matrix.
[~ 72 $. Only if the Write-Tape
: is to be initialized Ly Sub-
routine INTAPLE. The Write-
Tape ldentification ~.11 hr
from card columns 73-7§.

72 or Anything other than $§ if the
Write-Tape is not to be ini-
tialized.

73-78 A The Write-Tape identification.
{e.g., T1234). Use with § in
card ¢olumn 72.

7.~-78 or REWIND. The Write-Tape will
be rewound before being used.

73-76 or LIST. The Write-Tape will
be listed by Subroutine LTAPE
after the matrix has been
written on the Write-Tape.

73-78 or Anything e2lse will be ignored.

79-80 I The Write-Tape Number. (e.g., 21).

or Blank if the matrix is not

to be written on tape.

Format Type A allows anv keypunch symbol.
Format Type I allows only integer numbers right justi-
fied in the field.

As examples of tape input to Subroutine Read consider:

Exampie 1.

Example 2.

A matrix named AB2 with run number of RUN-46 is .o
be read from tape number 11 int» the computar and
printed. This matrix is also to be written on tepe
number 22 that is to be initialized and iduntified
as T4321.

A matrix named XYZ4 with run number of TKD is on tape
number 13 twice. The first time is at location 29
and the second time is at location 54. It is desired
to read the second matrix.

Figure 2 demonstrates how these two 2xamples would be written
on a coding form to facilitate keypunching to card:
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Subroutine READIM reads a matrix of integer numbers from
"either cards or tape into the computer. The matrix is then printed
so that these input data are recorded with the answers of a run.

A print suppression option is available for a matrix read from
tape. On option, the matrix read from either cards cr tape may

be written on i tape (by Subroutine WirAPE).

The first dara card read by Subroutine READIM contains the
information to indicate wheth:':r cards or tape will be used. The
information entered on this card (and subsequent cards for card
input) is given below.

Card Data Input Form.

Required entries are denoted by an * symbol below. Any other
éntry 1s optional.

Card Format
Columns Type (1) Entry

First Card 1-6 A *Matrix Name. Will appear
in printeut.
7-10 1 *Matrix Row 3ize.
11~-15 I *Matrix Cclumn Size.
16-69 A Any remarks to further iden-
— tify the input matrix.

72 $. Only if the Write-Tape
is to be initialized by Sub-
routine INTAPE. The Write-
Tape identification will be
from card columns 73-78.

72 or Anything other than $ if the
Write~Tape is not to be ini-
tialized.

73-78 A The Write-Tape identification.
(e.g., T1234). Use with $
card column 72.

73-78 or REWIND., The Write-Tape will
be rewound tefore being used.

73-76 or LIST. The Write-Tape will
be listed by Subroutine LTAPE
after the matrix has been
written on the Write~Tape.

73-78 or Anything else will be ignored.

79-80 1 The Write-Tape Number. (e.g., 21}.

or Blank if the matrix is not
... to be written on tape.

Write-Tape Opt.ons




READIM--2/6

Card Format
Columns Tvpe (1) Entry
Middle Cards 1-5 i *Row Number of matrix elements
on card.
6-10 1 *Column Number of matrix ele-
ment in first data field.
11-15 1 *First data field with matrix
elements. (2)
16-20 1 *Secend data field with matrix
elements. (Z2)
etc
76-80 1 *Fourteenth data field with
matrix elements. (2}
tast Card 1-10 I *Ten zeroes.

Note (1) Format Type A allows any xeypunch symbol.
Format Type I allows only integer numbers right justi-
fied in the fileld.

Note {2) Only nonzero elements need be entered.

As an example ¢f card input to Subroutine READIM consider the
following matrix:

(a1%Cl, o = [1 o
0 2
7

o

This matrix is also to be written on tape number 21 that is to

be initialized and identified as T4334. Figure 1 demonstrates
how this information could be written on a coding form to facili-
tate keypunching to cards.

3 0 6
4 0 0
0 0 O

o o Wum
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Tape Data Input Form

Required entries are denoted with an * symbol below. Any
other entry is optional. Only one card is used for each matrix
© read.

Card Format
Columns Type (1) Entry

One Card 1-6 A *Name of matrix to be read
from the Read-Tape.

10 Zero. The Read-Tape will
move fcrward from its present
position and se.rch to the
end of the tape. If the
matrix is not found upon the
first end-of-tape encounter,
the tape will automatically
rewind and make one more pass.
If it is not found on the
second end-of-tape encounter,
an error message will be
printed and the program will
stop.

7-10 I or Minus the location number of
mat. ix on the Read-Tape.
Tape will be positioned at
the beginning of the location
specified and then continue
as described above for a zero
in column 10,
*The Reac-Tape Number. (e.g., 11).
If positive, the matrix read
will be printed in the output.
If negative, the matrix read
will not be printed in the
output.
Run number of matrix to be
read frcom the Read-Tape.
22-27 REWIND. The Read-Tape will
be rewound before being used.
22-25 or LIST. The Read-Tape will be
listed by Subroutine LTAPE.
22-27 or Anything else will be con-
sidered as part of the rewarks
described below.

11-15

-~

*

16-21 A
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Card Format
Columns Type (1) Entry

28-69 A Any remarks to further iden-
— tify the input matrix.

72 $. Only if the Write-Tape
is to be initialized by Sub-
routine INTAPE. The Write-
Tape identification will be
from card columns 73-78.

72 or Anything other than $ if the
Write-Tape is not to be ini-
tialized.

73-78 A The Write-Tape identificatlon.
(e.g., T1234). VUse with $ in
card column 72.
73-78 or REWIND. The Write-Tape will
be rewound before being used.
73~-76 or LIST. The Write-Tape will
be listed by Subroutine LTAPE
after the matrix has been
written on the Write-Tape.
73-78 or Anything else will be ignored.
79-80 I The Write-Tape Number. (e.g., 21).
or Blank if the matrix is not
to be written on tape.

Write-Tap~ Options

e

Note (1) Format Type A allows any keypunch symbol.
Format Type I allows only integer numbers right justi-
fied in the field.

As examples of tape input to Subroutine READIM consider:

Example 1. A matrix named AB2 with run number of RUN-46 is to
be read from tape number 11 into the computer and
printed. This matrix is also to be written on tape
number 22 that is to be initialized and identified
as T4321.

Example 2. A matrix named XYZ4 with run number of TKD is on tape
number 13 twice. The first time is at location 29 and
the second time is at lecation 54. It is desired to
read the second matrix.

Figure 2 demonstrates how thece two examples would be written
on a coding form to facilitate keypunching to cards.
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Subroutine READO reads a matrix of octal numbers from cards
into the computer. The matrix is then printed side by side in
both octal and decimal so that these input data are recorded with
the answers of a run.

The primary purpose of Subroutine READO is to read a wmatrix
from punched cards without round off error. The cards are punched
by Subroutine PUNCHO. Octal representation of the matrix elements
is used because it gives an exact replica of the binary number
used by a digital computer. A decimal representation will not
give an exact replica. The matrix on punched cards is to be used
only as an emergency backup for the matrix written on a storage
tape.

Because of the emergency backup nature of input data to this
Subroutine READO, only cards are read. No tape reading or writing
options are available.

The information entered on the data cards is given below.
Required entries are denoted by an * symbol. Any other entry is
optional.

Card Format
Columns Type (1) Entry
First Card 1-6 A *Matrix Name. (Will appear
in printout.)
7-10 I *Matrix Row Size.
1i-15 1 *Matrix Column Size.
16-69 A Any remarks to further iden-
tify the input matrix.
Middle Cards 1-°% 1 *Row Number of matrix elements
on card.
6-10 1 *Column Number of matrix ele-
ment in first data field.
14-25 0 *First data field with matrix
elements. (2)
29-40 0 *Second data field with matrix
} elements. (2)
44~55 0 *Third data field w'th matrix
elements. (2)
Last Card 1-1C I *Ten zeroes.

Note (1) Format Type A allows any keypunch symbol.
Format Type 1 allows only integer numbers right justi-
fied in the field. Format Type 0 allows only octal
numbers.

Note (2) Only nonzero elements need be entered.
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No examples of input are given because data would not be key-
punched for input to Subroutine READO but rather obtained from
- Subroutine PUNCHO.
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Subroutine REVADD rearranges (re 'ises) the rows and columns of
a matrix [A], multiplies [A] by a scalar alpha, and adds the re-
sult to a previously defined matrix [Z]. The revision of [A] is
specified by two vectors. The first vector {IVEC} gives the new
row location of each row of [A] in [2]). The second vector {JVEC
gives the new column location of each column of [A] in [2]. The
{Z] mavrix must be defined before the use of this subroutine. For
instance, if [Z] is to be originally defined as all zeros, Subrou-
tine ZERO could be used. The REVADD operation can be thought of
in subscript notation as

_ i = 1, NRA)
2,y lour) =z, (n) +u a;, (j =1, NCA)
where
k = IVEC(),
L = JVEC(]).

NRA 1is the number of rows of [A], and NCA is the number of columns
of [A].

Values in {IVEC} and {JVEC} may be positive, negative or zero.
A negative value changes the sign of the corresponding row or
column of [A] in [Z]. A zero value omits the corresponding row or
column of [A] from [Z]. The values are integer numbers.

This subroutine may be called repeatedly to feorm {Z] from the
revision/addition of several [A] matrices.

An 1lmportant use of Subroutine REVADD is to revise and add the
stiffness matrix of a structural component to the stiffness matrix
of the complete structure to account for the difference in coor-
dinate systems.

EXAMPLES

The first example to illustrate the REVADD operaticn is as
follows:

Matrix [Z] has been previously defined as
1. 0. 0. 0. 0.
0. 2, 0. 0. 0.

{2]4x5 =1 0. 0. 3. 4. 5.
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Let [A] be defined as

The first row of [A] is to be added to the third row of (2], the
second row of [A] is to be omitted from [Z2], the third row of [A]
is to be added to the first row of [Z], with the sign of each
element reversed.

3]

Thus {IVEC}, , =] 0

L"’l

The first column of [A] 1s to be added to the second column of [Z]
with the sign of each element reversed, the second column of [A]
i3 to be added to the fifth column of [Z].

-2
Thus {JVEC}, . = :
5
Then, assuming v = 1.0 and placing {IVEC} and {JVEC} adjacent to
[A] to aid in visualizing the revision of [2], we have

1. 0. 0. 0. 0. |-2 5
0. 2. 0. 0. 0 B | P
[Z]4x5 = +1.0
v. 0. 3. 4. 5. ol 3. 4.
. 0. 0. 0. 0. 6. =Y | ER Y
1. 0. 0. 0. 0.]
- -
Y TR PO O P TS RN -1 | [ O R T
0. 0. 3. 4. 5 ollo. -3. . 0. &
00 0. U 0 6- —1 0 _S O O 6




LP

0.

6.

0. 5.
1 +1.0 0. 0.
. 0. —10
. 0. 0.
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A second example of the use of this subroutine demonstrates
the coordinate transformation concept which is a very important

application of REVADD.

It is desired to transform a stiffness
matrix from an original coordinate system (subscript 1) to a

final coordinate system (subscript 2) as shown in the sketch below.

X1

z)
y2

/L

X2

For this example, the stiffness matrix in the ortiginal ccoidirnate
system is assumed to be



REVADD--4/5

From inspection of the coordinate system axes in the above sketch,

X2 ~2)
Y2 = 7%
23 yi

To obtain the vector on the right hand side of the equation:

x) of the original coor:Zinate system is to be the second
row of the final coordinate system with the sign reversed.

y1 of the original coordinate system is to be the third
row of tie fin:l coordinate system.

2) of the orliginal coordinate system is to be the first
row of the final coordinate system with the sign reversed.

The {IVEC} to accomplish this change is
-2
{rvech, =] 3

g}

Apply this {IVEC} as the {IVEC} and {svic} to the original stiff-
nigs matrix to obtain the final stiffriess matrix. This application
i« unalogous to the change in coordinates rsle in the triple matrix
product procedure.

241 2. . 6. . -5,
3I§2- 3. 5. Revabp, 4, 1. -2.
-1} 4. 5. e. ~5, =2, 3.

The above REVADD procedure mey be compared with the more conven-
tional triple matrix product procedure below.
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The equation for the coordinate transformation would be

- ~—

X)] -1. ; X
Yif= 1. y2 (1)
Z] -1. Zy !

The strain energy eoxpression with the stiffaess matrix is

wiven by U =% {q}T Xl {q} or for coordinate system 1,

EREE RN | B

C=2%[{x; y1 2] 2. 3. S5.0In (2)
Lﬁ. 5. 6. z

Substituting Equation (1) intn (2) gives

-1. [ . 2. 4? -1. X
L' = I/é [xz yZ 22] '—l. 2- 3. 5- l‘ y:’ y
1. 4. 5. e.] |-l z,

thus the inner triple matrix product gives the stiffness uwatrix
in coordinate system 2. i.e.,

6 4. ~5.
4, 1. ~7
-5, =2, 3

which is the same result as that obtained from the REVADD procedure.

The advantcges of using the REVADD procedur: over the triple
matrix product proc.dure are:
1) Less computer time;
2) Less computer core *s used;

3) Usuilly easler to code the {IVEC} (thus {JVEC))
than to code the trassformation matrix.
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Subroutine ROWMLT evaluates a special matrix opération by
‘multiplying each row of a matrix [B] by a scalar. That is,

T 7
T
az {baly e

Zlypene = )

C

-

LaNR *bxnfixﬂ

W' 2re z..=a_b. (i
ij i ij j

1, NR
1l, NC
{biir denotes row i of [B]. Each scaler a; is an element of the

input vector {AVEC}. NR is the number of rows in [B} and [Z] and
the size of {AVEC}. NC is the number of columns in [B] and [Z].
The number of elements of {AVEC} must be equal to the number of
rows of [B]. '

EXAMPLE

Consider the input of

-
{AVEC} =1 2.] and {B] =}7. 2. -3.1.
2<1 [;3. 23 14 5. .

The output will be

2170 2. -3.)
(2], -3 [4. s, 6.]]

= 14. 4. -6o
-12. -15. -18.}°
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Subroutine RTAPE reads a selelted matrix from tape (disk) into
the computer core. The matrix t) be selected is identified by the
desired run number and matrix néme. This procedure is accomplished
by searching the matrix headinés (see Subroutine WTAPE writeup)
until a match with the desipga run number and matrix name is ob-
tained and then reading the matrix elements from tape (disk) into
the computer core. The search starts from the current position
(does not rewind) of the tape (disk) and proceeds to the EOT (end
of tape defined in Subroutine WTAPE writeup). If the desired
matrix was not found upon reaching the EOT, a rewind is performed
and one more search “o tte EOT is made. I1f the desired matrix is
again not found, (1) an error message is printed, (2) a listing
of the matrix headings is printed (see Subroutine LTAPE writeup),

and (3) transfer is made to Subroutine ZZBOMB where the program
is terminated.
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Subroutine SIGMA generates a square matrix with elements on

and below the diagonal equal to one and above the diagonal equal
to zero. That is,

zij = 1' (i ij)
zij = 0. (i< j)
In matrix notation,
B T
[Z]NxN =11.
1. 1.

where N is the size of [Z].
This subroutine is useful in calculating the sum of all quan-
tities of a given collection. The name of the subroutine comes

from the algebraic notation for this process, that is, I.

As an example of the use of this subroutine, consider the fol-
lowing beam with lcads Py at discrete points on the beam:

P P2 P3 Py

1 2 3 4

The shear to the right of each point (i) on the beam is

or in matrix notation,

vil [1. 0. 0. 0. ] Im:
vol J1. 1. 0. O. ] §p>
vaf f1. 1. 1. 0.} 1,3} °
vyl 1. 1. 1. 1.} Ipy
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Subroutine SMEQl gives the solution of linear simultaneous
algebraic equations. These equations are expressed in matrix
form as

(Aley Byea = Bl

vwhere [4j and {B} are known and {Z} is to be calculated. N is

the size of the system. The method, with which Gauss's name is
associated, consists of a chain of successive eliminations by
which the original system is transformed into a system with an
upper triangular matrix whose solution is easily calculated. A
modification cf the standard technique is used in the subroutine.
That is, the largest pivotal divisor is searched for and used.

The rcws are interchanged when necessary to accomplish this. This
technique will give the most accurate results since division by
small numbers will be avoided.

DESCRIPTION OF TECHNIQUE

Given a system of "N" linear algebraic ejuations,
y &

all z1 + al2 22 + .. .+ alN ZN = bl
a21 zl + a22 22 +. ..+ aZN zN = b2
a z_ + a z,+. . . +a z. . =b

N1 1 N2 "2 NN N N°

The procedure used to obtain {Z} is as follows:

1) The largest coefficient of 2 is found. The equation in

which this occurs is interchanged with the first equation;

2) Divide the new first equation by the new a3ys

3) Alter Equations 2 through N by subtracting from the ith
equation the value a; times the first equation from step

2). This is done for i =2, 3, . . . N.
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After these three steps, a new but equivalent system of equations
restvits:

2y *ay 2% 3y )23 a0 =b,

822.1%2 %331 % - - A T b

a1 % Y a3 33t s - tagy g 2yt by

where the subscript (.1) designates the first elimination. The
variable z, has thus been eliminated from Equations 2 through N.

Steps 1), 2), and 3) above are repeated on Equations 2 through
N such that z, is also eliminated. This process is coatinued un-

til an equivalent system of equations is of triangular form as
shown below. This process is referred to as the forward solution.

N i B
13.1 1] {2 b1

23.2 22| | %2]=|P2.2

"]

vy,

L. -

=

The back solution for {Z} from the above system of equations

gives no problem since zN is immediately given as bN N’ Next

201 is easily found from the (N-1) Equation and so on until all

zi are known.
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EXAMPLE

The following data are given as input,

[A) =12. 3. 4.| and {B} =1 2.1;
3 15, 6. 7. S Py
8. 9. 9. 4.

Thus the equations to be sclved are

2. 3. 4] [ 2.]
5. 6. 7.0 [z,]|=]-3.
8. 9. 9.z, 4.

Using the technique described previously, the reader can verify
the output to be

z1 -19.00
22 = 29.33
z, -12.00]1.

REFERENCE

Faddeeva, V. N.: Computational Methods of Linear Algebra.
Dover Publications Inc., New York, 1959.
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Subroutine SRED2 operates on the stiffness matrix [A] to form a
reduced stiffness matrix [R] and/or the reducing transformation
[T]. The relation between the stiffness matrix [A]), displacements
{x}, and applied forces {B} may be expressed in matrix form as

fa] {X} = {B}
The reduction method assumes Eq [1] to be partitioned as

(a0 a1 [xp]  [ep

[Az1 [Azzl (xz} {32}

where {Xl) are the displacements to be reduced out and {xz}

are the displacements to be retained. The applied forces acting
on the coordinates to be reduced are assumed to be zero, such that

{8,} = {0}

Substituting Eq [3] into Eq [2] and expanding the upper partitionm,
will yleld the reduced displacements in terms of the retained
displacements as

-1
{xl} = - [A11] (ay,) {x,}

Expanding the lower partitions of Eq [2] and substituting Eq [4&)
will yield the reduced stiffness matrix as

[R] {X,} = {B,}

where [R] is the reduced stiffness matrix and is expressed as
[R] = [A,,) = [Ay) 1A 170 [AL,]

The reducing transformation [T] may be expressed using Eq [4] as

{x.}

1
= [T] {x)}
Xy 2

(1]

[2]

(3]

(4]

(51

(6]

(7]
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where
a0
: AT aL)
(T] = 11° [i] 12_] (8]
Also
(R] = ()7 (4] 1) (9]

DESCRIPTION OF TECHNIQUE

This subroutine uses Gauss reduction partially completed to form
matrix [R] and [T] from stiffness matrix [A]. As an example of
the method, consider three simultaneous equations of the following
form

a)y) X) + ap) X) + a4 %3 = by
ay) Xp ¥ 3y, Xy v ayy x5 =D, (10}
a x. + a x. + a = b

314 32 %2 33 ¥3 7 °3

These equations may be writter in matrix form as

311 %12 413 X1 5
871 322 923 X, y=¢ b, (11]
a a a X b
L31 32 “33 3 3
Solve the first Equation for x, as
a a b.
S T le Xy < G Xyt g (12]
11 11 11

Substituting Eq [12] into ‘e second and third equations in Eq [1X]
and divide the first by a,, results in

11
B * x| *'7
1 2, 354 ) 5
* %* *
0 3, 3y, X, = b2 > {13]
* * *
_‘_’ 432 "33_J *3 P




" where
* 312
a —
12 ay,
a
’aIa = ;lé
11
]
822 = 393
*
873 F 33
*
332 = 23
* -
333 T 833
* bl
by = 3.
11
b = b
2 27
®
by =k, -

Solve the second equation for x

3

*

b,

x, + ==

]

42

2

which will yield

snsnz_- 3/6
[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

{22]

{23)

Substitute Eq (23] into the third equation in Eq [13] and divide
the second equation by agz. This results in

_

1 *
82

0 1

0 0

*
a

13
*k
23
kk

33
-

a

a

N

oh

[24]
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where
a*
** 23
83 ° R [25]
22
® a*
Ak % 823 232
83y = 835 =~ [26)
872
b*
*%k 2
b, = & (27)
372
b* a*
*x % P83
by = by - (28]
22

The reduced stiffness matrix has been formed and is contained as the
Kk
a element. This can be shown if in Eq [2] we let

33
} fr
{x
1 {29]
b
{xz} = {x3} (30}

] = 1 %12

[All [31]
31 %22
a
fa) = | P [32)
823
(A3;] = [ay) aj5)] (33

[4,,) = [34]

333
b

(8} = 1} [35]
b,

{Bz} = b3 [36]
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Substituting Eq [31] through [34] into Eq [6] results in a reduced
stiffness matrix of the form
ay) 833 831 ¥ 819 313 85) " 814 3y, 34) " 3y 3,5 3y,

(R} = a,, + =
811 322 T 82 31

33

(37]

Equation [37) is identical to the result obtained by expanding
Eq [26). Thus, Gauss reduction partially completed yields the
reduced stiffness matrix.

The reducing transformation may also be obtained using Gauss re-
duction if additional operations are performed. From Eq [24],
solve the second equation for x,

Rk Kok
X, = - 8,4 X, + b2 [38)

hd

Substitute Eq [38) into the first equation in Eq [24], which will
yield :

[~ N\ [ xax)
1 0 a;;;j- b

0 1 ap <x2r<l€*> (39

Ak *k
0 0 a

N 13 | M) U3

Rk * X kk
a = 8,4~ 3, 3y, [40]

*kk * k  kk
b, = b -a) b, [41]

Inspection of Eq [39]) shows that we have formed a uniix matrix

partition where the row-columns were reduced. The al3 and the
R

a23 elements contain the necessary information to form the reduc-

ing transformation. To show this, substitute Eq [31] and {32] into
Eq [8] to yield



[T] =

871 923

T 313 3

81 322 ~

812 413~

221 412

a); 355

81 %22~

1

321 212
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[42]

The second and third rows of Eq [42] are equal to the negative of

1 *kk q *k ‘ 30
elements 2,3 and a,, in Eq [39].

yields the reducing transformation.

Thus, Gauss reduction also
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Subroutine START performs th= following uvperations:

1)

2)

3)

4)

5)

Run number,

-

Reads Input Card i for the run numbe: (ény keypunch
symbol in card columns 1 thru 6) and -he user's name
(any kevpunch symbol in card columns 11 thru 28).

If the run number is equal to STOP (Card columns 1
thru 4), the run is terminated.

If the run number is not equal to STOP, the run con-
tinues in Subroutine START as follows.

Reads Input Card 2 for Title Card 1. Any keypunch
symbols may be used in Card columns 1 thru 72.

keads Input Card 3 for Title Card 2. Any keypunch
symbols may be used in Card columns 1 thru 72.

Initializes page number as zero for use in Subroutine
PAGEHD.

Interrogates computer for the date,

date, page number, user's name, Title Card 1, and

Title Card 2 are transferred by a COMMON block labeled LSTART for
use in other subroutines PAGEHD, PLOTi, PLOT2, PLOT3, and WTAPE,

Subroutine START is used to start each computer run in the
FORMA system and will normally be the first subroutine called in
a computer program. As an example, pertinent statements from a
program using £:.:RT could be:

1 CALL START

GO TO 1
END
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Subroutine STIFl takes distributed longitudinal stiffness of
a rod and replaces it with a "free-free" stiffness matrix. Lon-
gitudinal stiffness will be discussed here but the results are
also applicable to the torsional stiffness case. The elements of
the stiffness matrix are representative stiffness values of the
rod at selected points on the rod. These elements are calculated
by assuming constant axial force between pairs of the selected
points.

The x-stations of the selected pcints (panel points) are given
in {PP}. These x-stations must be in increasing order.

The distributed stiffness, AE{(x), is assumed to be piecewise
linear and is represented by straight line segments as shown in .
Figure 1.

AE(x)

-

Figure 1 Distributed Stiffness

The x-stations of the first and last points for distributed
stiffness must colncide with the first and last panel point x-
stations, respectively. All other x-stations of the end points
for the line segments giving the distributed stiffness are inde-
pendent of the panel poinr x-stations. The line segments may or
may not be joined; however, there must not be aay x voids or over-
lans. The distributed stiffness is defined in [DAE]. Each row
of [DAE] represents one nonvertical line segment. The form of
each row of [DAE] is (x; x, AE; AE;] where x;, AE; give the first
end point and x,, AE; give the second end point of a line segment.
The x, of row 1 of [DAE] must be equal to x; of row 2, etc.

The calculated representative stiffress values at the selected
panel points are placed in a stiffness matrix given by [Z] which
is symmetrical and tri-diagonal. That is,
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“Saxn
zn-l,n—2 zn-l,n—l zn—l,n

z z
n,n~1 n,n

where z, j = zj N and n is the number of panel points. The gen-

eralized coordinates associated with [Z] are axial deflections at
each of the panel points.

As mentioned before, the results of the longitudinal stiffness
case considered in this paper are also applicable to the torsional
stiffness case. The following table gives the relationship of
variables

Longitudinal Torsional
Cx X
§ &
AE GJ
P (axial force)] T (torgue)

DESCRIPTION OF TECHNIQUE

The replacement of distributed longitudinal stiffness of a
red by a stiffness matrix is obtained using a strain energy ap-
proach as follows. Congider a portion of a rod that is loaded
with an axial force at panel point k and restrained at panel
point k + 1 as shown in Figure 2. The region between panel points
k and k + 1 is referred to as bay k.

P 4

S TY - ~ i_k_tl__________.x
v

Figure 2 Loading on Bay k
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The strain energy in bay k is defined by

*k+1 ;
- P2
Uy = % S AG) EG o W
*x

where

P(x) is the axial force,
A(x) is the cross-sectional area of the rod,
E(x) is the modulus of elasticity of the rod material, and

x is the longitudinal axis of the beam.

To integraté Equation (1), the axial force in bay k is assumed
conetant and equal to the axial force at panel point k. That is,

P(x) = P, . ’ (2)

Also, the product A(x) E(x) is assumed to vary linearly as shown
in Figure 3.

AE(x)
AE; =
AEI hame.
i ' x
X1 X2

Figure 3 Stiffness Distribution

The equation for a straight line segment as shown in Figure
3 is ’

AE(x) = AE} + (x - x1) (AE;, - AE))/(x; - x1). (3)
Substituting Equations (2) and (3) into Equation (1) gives the

strain energy of the axial stiffness represented by one line seg-
ment 1 in bay k as
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1" %Pk dx. %)

S AE + (x - X ) - AE l/(x - x

The subscripts p and q have been in.roduced to handle the possi-
bility of a line segment extending past the bay limits. Thus, xp

is the greéter of x or x

1 2 k+l.
Similarly, AEp is either AE. or AEk’ and AEq is either AEZ or

or xk and xq is the lesser of x

1
AEk+1' The integration is continued for the line segment in ad-

jacent bays, if necessary, until the entire line segment has been
used. Performing the integration of Equation (4) yields

2
Pk fk (S)
where

£ = -;— v —2, and (52)

= (A5 T AEP)/(xq T %) (5b)

For constant stiffness, i.e., AEp = AEq, Equation (5a) is of in-

definite form. For this case, integration of Equation (4) yields

(x - x )
fk = -iﬁﬁ;—Jl‘. (5¢)
P

Equations (5) are evaluated for every line segment of distrib-
uted stiffness. Then, application of Castigliano's Theorem gives
the axial deflection of panel point k relative to panel point
k+1 as

from which

=, (6)
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The restirauint at panel point k + 1 is removed by application of
the trai:formation

5
Aék = {1 ~1] k . ¢

Se1

Sut:stitution of Equations (6) and (7) into Equation (5) (evalu-
ated for all line segments i in bay k) gives the strain energy in
bay k zs :

b4 2 é
Y Kok Zk,k+l k
U = ’[6k 6k+1] 5 ®
(sym)  Zi+1,k+1] | Ck+l
where
zk,k = zk+l,k+1 = l/fk, and (8a)

2 K -llfk. (8b)

The ke:nel matrix in the triple matrix product of Equation (8) is

the stiffuess matrir  hat represents the longitudinal stiffness
in bay k. ’

The stiffness matrix for the entire rod is obtained by evalu-
ating Equations (8), (5a), and (5b) for every bay. Each resulting
2xZ bay stiffness matrix is added to previous 2x2 bay stiffness
matrices a: like panel points to form the stiffness matrix (free-
free) for tha entire rod.

SPECIAL CASE

For constai. sciffness (AE) extending from x_ to x_ in bay k,
the stiffness matrix is P 4

AE [1 -1]
X - x -1 1}
P

q
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Subroutine STIF2 takes distributed bending stiffness and (on
option) distribut.d shear stiffness of a beam and replaces them
with a "free-free'" stiffness matrix. The elements oi the stiff-
ness matrix are representative stiffness values of the beam at
selected points on the beam. These elements are calculated by
assuming constant shear and linearly varying bending moment be-
tween pairs of the selected points. ’

The x-stations of the selected points (panel points) are given
in {PP}. These x-stations must be in increasing order.

The distributed bending stiffness, EI(x), is assumed to be
plecewise linear and is represented by straight line segments as
shown in Filgure 1. The x-stations of the first and last points
for distributed stiffness must coincide with the first and last
panel point x-stations, respectively. All other x-stations of
the end points for the line segments giving the distributed stiff-
ness are independent of the panel point x-stations. The line
segments may or may not be joined; however, there must not be any
x volds or overlaps. The distributed bending stiffness is defined
ian [DE1]. Each row of [DEIL] represents one nonvertical line seg-
ment. The form of each row of [DEI] is [x; x; EI, EI,] where x;,
El, give the first end point and x;, EI, give the second end point
of a line segment. The x; of row 1 of [DEI] must be equal to x)
of row 2, etc.

EI(x)

Figure 1 Distributed Bending Stiffness

The distributed shear stiffness, KAG(x), is also assumed to
be represented by straight line segments. All statements used
above for distributed bending stiffness are applicable to distrib~-
uted shear stiffness. The distributed shear stiffness is de-
fined in [DKAG]. The form of each row of [DKAG] is [x; x, KAG,
KAG;]. The end point stations x; and x; for the shear stiffness
line segments are independent from the end point stations x; and
x2 for the bending stiffness line segments.
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The calculated representative stiffness values at the selected

panel points are placed in a stiffness matrix given by (Z]. The-
form of [Z] is - :

[%s.6] ¢ [%.d

o [ T o

where n is the number of panel points. Matrix [Z] is symmetric,
i.e., zij = zji' The partition forin of (Z] results from the two

generalized coordinates (lateral translation 6 and rotation €) at -
each panel point arranged with all translation coordinates first
followed by all rotation coordinates. Each partition of {Z] is
square and tri-diagonal, for example,

.

3 4

1,1 1,2 ]

22,1 22,2 22,3

23,2 %3,3 %34

[Zéﬁﬁ " .
nxn

Za-1,n-2 %n-1,n-1 %n-1,n

| Zn,n-‘-l zn,n
The sign convention used in this paper to obtain the stiff-
ness matrix [2] is shown in Figure 2.

Figure 2 Sign Convention
for This Paper
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The beam stiffness matrix obtained in this paper is applicable
for either the pitch or yaw plane with a change of variables and
possible eign changes. For the axis system shown in Figure 3, the
followire variables would be used. ‘ :

Axis System of Figure 3
g:::r Pitch Yaw
G, x, 0) | (2% %) | (7> % %)
X X _ X
8 8 ' )
2 y
e 0 -8
y z
0
’ z
;]
y
y A
< > x 8,

Figure 3 Beam Axis System (Right-Hand)

Note that in order to have a right-hand system such as that shown
in Figure 3, the sign of the [Z6 6] and [Ze d partitions of [Z]
» *

~rom thig subroutine would have to be changed for the yaw plane.

DESCRIPTION OF TECHNIQUE

The replacement of distributed bending and shear stiffness
of a beam by a stiffness matrix is obtained using a strain energy
approach as follows. Consider a portion of a beam that is loaded
with a shear and moment at panel point k and restrained at panel
point k + 1 as shown in Figure 4. The region between panel points
k and k + 1 is referred to as bay k.
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k+1

- X

Figure 4 Loading on Bay k-

The strain energy in bay k is defined by

U =k

where

M(x) is the
V(x) is the
E(x) is the

I(x) is the
bean's

K is the

E(x) I(x) KA(x) G(x)

sx““( M2 V(g )dx (0

x

bending moment,
shear,
bending modulus of elasticity cof the material,

cross-sectional moment of inertia about the
neutral axis,

shape factor (e.g., K = 1 for a solid circular

cylinder, K = 0.5 for a thin walled circular cylin-

der),
A(x) is the

G(x) is the
and

x is the

cross-sectional area,

shear modulus of elasiicity of the material,

undeformed longitudinal axis of the beam.

To integrate Equation (1), the following assumptions are made.
First, the shear in bay k is assumed congtant and equal to the
shear force at panel point k, that is,

V(x) = Vk. (2)
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Second, the bending moment in bay k is assumed to vary Zlineariy,
that is,

M(x) = My +'vk(x - xk)' 3

Third, the products E(x) I(x) and KA(x) G(x) are assumed to vary
linearly as shown in Figure 5. The equation for a straight line
segment as shown in Figure 5 is

EI(X) = EI; + (x —"xl) (EI.Z - EII)/(XZ - VX1)_ 4)
EI(x)
El, |-
Enf
AJ \ x
X1 X2 '

Figure 5 Stiffness Distribution

The strain energy of bending and shear stiffness will be con-
sidered separately. The bending stiffness is considered first.
Substituting Equations (3) and (4) into Equation. (1) gives the
strain energy of the bending stiffness represented by one line
segment 1 in bay k as

| } xq (x - xk)z (x - xk) Vk
LA '/a[vk M.k] Sx 2 mm) | " (5)

where C = EI_ + (x - x ) (EI - EI )//P( - x ). Tne subscripts
P P q P q P

p and q have been introduced to handle the pocsibility of a line
segment extending past the bay limits. Thus xp is the greater of
x; or X and xq is the lesser of Xy O X4 Similarly, EIp is
either EIl or EIk and EIq is either E12 or E1k+l' The integration
is continued for the line segment in adjacent bays, if necessary,
until the entire line segmant has been used. Performing the in-

tegration of Equation (5) yields the strain energy of bending
stiffness as



.Ui,l; =. ?Z[Vk Mk] (sym)

where

k,k

e T

£, kel

and

. L
p

Fek  fkkel

1 2 2 ag 82
_ZE(Hq'HP)'b?- b3
]
T EL,

1, Elg
b2V E

(EI H -EI H »/L
P q q plf P

(E1q - EL) / L

P k
X " %k
X - X o

q P

fer1, k41
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Vi

" 6)

(6a)

(6b)

(6c)

(6d)
(6e)
(6£)

(6g)

(6h)

For constant bending stiffness, i.e., EIp = EIq, Equations (6a)

through (6¢) are of indefinite form.

of Equation (5) yields

£ = (H3 - H3)/5EI
k,k ( 9 P P

o (w2 - w2
£ b1 (uq up) /2}:1p

Errl bl = LpfEL

where Hp. Hq, and Lp are given above.

For this case, integration

(61)
(63)

(6k)
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The strain encrgy of shear stiffness is considered next. The
shear stiffness distribution is similar to that shown in Figure 5
and is given by the equation ‘

KAG(x) = KAG) + (x - x)) (KAG, - KAGy)/(x; - x1). (7)
Substituting Equations (2) and (4) into Equation (1) gives the

strain energy of the shear stiffness represented by one line seg-
ment i in bay k as

[ x T
d d Vk
=Y X
Uik 2["k_ Mk] c O (8)
: X M
P k
| o J

where C = KAGp + (x - xp) (KAGq - KAGP)/(xq - xp). The subscripts

p and q have similar meaning as has been previously discussed for
bending stiffness distribution. Performing the integration of
Equation (8) yields the same equation as was obtained previously
for bending stiffness and is repeated here as

f f \
U, - %[Vk M‘k] Kk kktl k )
’ (sym) f M|
k+1,k+l
Now ﬁowever,
1 KAG
k= p A KAG, (9a)
fk,k+1 = (9b)
Exel,k+l = 0 (9¢)
and
= (KAG - KAG L 9d
b ( q p)/ P (54)
As beforae
L =x =-x. (%)
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For constant shear stiffness, i.e., KAGp = KAGq, Equation (9a) is

of indefinite form. For this case, integration of Equation (5)
yields
f = L [KAG . 9f
k,k P/ P (9£)
Equations (6) are evaluated for every line segment of bending
stiffness and Equations (9) are evaluated for every line segment
of shear stiffness. Then, application of Castigliano's Theoram

gives the lateral translation and rotation of panel point k rela-
tive to papel point k+l as

[ U, ]
| 2
LS aV f f Vv
Prll 7L ok Tk k (10)
ABy Wl ey B e | Mk
Jolving Equation (10) for Vk and Mk in terms of Adk and 49, and
substituting into Equation (6) [or (9)] gives the strain energy
in bay k as
K K a8
u, =ufas, e ]| 8¢ el (11)
k K k (sym) K A8
00 k
where
K e fert et (11a)
86 D a
fk+1 k+1
e = T XTL
Ko D (11b)
fk k
= e—t
KGO D (11lc)
and
= - 2 .
D= £k firn, i1 7 Bl kel (1id)
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The restraint at panel point k + 1 is removed by application of
the transformation

B )
ék
AS 1l -1 0 -L ] 8
k| _ , ki | Tkl (12)
Aok 0 0 1 -1 Uk
O+l
where
Lk = X4 " X (12a)
Using this transformation in Equation (11} gives the final strain
energy expr:zssicn as
— . -1 T - - -
Sy 2k 2Kkl 21 k+n i, ktn+l Sy ]
& z z z . 3
k+1 k+1,k+1 k+1,k+n k+l,k+nt+l k+1
v = L : (13)
% Zkin,ktn Cikn,kintl || Ok
fk+1_‘ h(sym) Zptn+l, kebn+l) | O+l |
where
zk,k = KG,G (13a)
2k k41 = K s (13b)
2y k+n = Xso (13¢c)
2y kbntl = "l Kso T Keg (13d)
2141, k41 = Kso (13e)
Zerl,ktn - Koo (13£)
Ziwi, ktntl = L Koo ¥ Ky (13g)
Zitn, ktn © Ko (13h)
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Zyn, kintl © e Rse T Koo (13i)

12

Zientl, kbt © Ck Kos T 2 Koo t Kpp 133)
and n is the number of panel points. The xernel matrix in the
triple matrix product of Equation (13) is the stiffness matrix
which represents the bernding and shear stiffness in bay k.

The stiffness :.atrix for the entire beam is obtained by eval-
uating Equations {11) and (13) for every bay. Each resulting é4xé4
bay stiffness matrix is added to pievious 4x4 bay stiffness ma-
trices at like panel points to form the stiffness matrix (free-
free) for the eatire beam. '

SPECIAL CASE

For constant bending stiffaness (El) and infinite shear stiff-

ne;s extending to the bay limits [x. and x, ), the stiffness
. ( k r+1
watrix is

— l- —
12 12 -6L, 6L,
! &
R N S S
13 i 2 :
L3 | (sym) ! ALk 2Lk
| 412
i | k|
where
L ® Fa1 T ¥



Subroutine SYMLH symmetrizes a square matrix by placing values
from above the diagonal below the diagonal. That is,

a,. =a i< j)

i 1
EXAMPLE

1f [A] 1s input to Subroutine SYMLH as
(Aly 4 =J2. 2. 3.

[A]3x3 =81l. 2. 3,

SYMLH



SYMUGH
Subroutine SYMUH symmetrizes a square matrix bv placing values
from below the diagoral above the diagonal. That 1is,

a,, = a

13 34 -3
EXAMPLE
1f [A] is input to Subroutine SYMUH as

[A]3x3 =11l. 2. 3.
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Subroutine TERP1 performs interpolation assuming a linear
function between known points. The x and y coordinates of the
known points are given by the elements of {XA} and the corre-
sponding elements in a column of [YA], respectively. Each column of
(YA] gives the y coordinates of a different set of points. Inter-
polated y coordinates are calculated at selected x coordinates
which are given by the elements of {XZ}. These interpolated vy
coordinates are placed in [YZ]. Each column of [YZ] has inter-
polated values of the respective column of [YA]. Extrapolation
assuming a linear function is performed when any element of {XZ}
exceeds the limits of {XA}.

DERIVATION OF TECHNIQUE

Given the x,y coordinates of points i and i+l, the ccordinate

y, at is to be found by interpolation assuming a linear function.
k 2" % . :

The equation of a straight line is y(x) = ax + b, or in matrix

notation, y{x) = [x 1] |a] . The coefficients a and b can be
b
g;;:rzined because the coordinates X yi and X410 Yiel are known.
»
Yi X, 1]la
Yier] [ Fier LD

from which

a

&
le T %41 bex
i+1
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giving

1
y(x) = ————— [x 1] [ 1 -1 y.
TS| . - 1
LT+ %4 Vin
Therefore

V() =N =Y * (o = %) (Vian = ¥l xper = )0 M

The following table gives the correlation between the nomenclature
of Equatinn (1) and that used in the Fortran coding in the sub-
routine.

Equation (1) Fortran Coding*
% XA(1)
X 41 XA(I+1)
Y4 YA(I) *
Yi+1 YA(I+1) *
X, XZ (K)
Yie YZ (K) *

*Subscript j, denoting different sets
of points, has been omitted for clarity.

EXAMPLE

Consider the following two sets of points denoted by (1) and
(2) in the sketch.
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The coordinates of the points are given by

-2. -4. 2.
{xal = | 1. and (YA) = } 2. -4.}.
30 lo _2-

{XA} gives the x coordinates of the points in both sets (1) and
(2). Column 1 of [YA] gives the y coordinates of the points in
set (1) and column 2 of [YA] gives the y coordinates of the point:
in set (2). The y values are wanted at x = -1. and x = 7., that
is, at {X2} = . At x = -1., interpolated values of y = =-2.

7.
and y = 0. are calculated from columns 1 and 2 of [YA], respec-
tively, using rows 1 and 2 of {XA} and [YA]. At x = 7., extrap-
olated values of y = -1. and y = 2. are calculated from columns
1 and 2 of [YA]}, respectively, using rows 2 and 3 of {XA} and

[YA). The final result is .

I¥2. 0.
[Yzj = ] .
t-1. 2.

To relate this example problem to a practical problem, con-
sider {XA} to be the collocation points (panel points) of a vehicle
and [YA] to be the modal displacements for two modes. Gyros are
to be placed at stations x = -1. and 7. (i.e., {XZ}). The modal
displacements ([YZ]) are to be found at these stationms.
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Subroutine TERP2 performs interpolation assuming a diparabolic
function between known points. A parabolic function is used where
only three points are available. A diparabolic function is ob-
tained from the weighted averape of two adjacent parabolas and
" will be explained later. The x and y coordinates of the known
points are given by the elements of {XA} and the correspornding
elements in a column of [YA], respectively. Each column of [YA]
gives the y coordinates of a different set of points. Interpo-
lated y coordinates are calculated at selected x coordinates which
are given by the elements of {XZ}. These interpolated y covordi-
nates are placed in [YZ). Each column of [YZ) has interpolated
. values of the respective column of [YA]. Extrapolation assuming
a parabolic function is performed when any element of {XZ} exceeds
the limits of {XA].

DERIVATION OF TECHNIQUE

The diparabolic interpolation procedure is obtained as follows.
Because this procedure is dependent upon using parabolas, the
‘parabola will be considered first. Given the x,y coordinates of
points 1, 2, and 3 below, a parabola is to be fitted to these

points.
y 2
'/-\3
X

The equation for a parabola with axis parallel to the y axis is

y(x) = Ax? + Bx + C

or a
y(H) = [H2 H 1] b
c
where
X - xl
H=—
Xy = Xl (la)
or
X - X2
H= —— (1t)

X3 = X3
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is used for ease in later algebraic calculations. The coefficients
a, b, and ¢ can be determined because the x (or H) and vy coordi-
nates at points 1, 2, and 3 are known. That is,

; 2
¥y Hy H; 1]]a
= b2
Yo H; H, 11}b
2
Y3 H3 H3 1_ c
from which
a y:
b= [»]1]y2
c ya -
where
Hy-Hy . = (H1-H3) H)-H,
f(ﬂz-ﬂ3) (H2+H3) (Hl-ﬂ:;) (H1+H3) -(Hl-uz) (H1+H2)
HyHj3 (Hy-H3) -H H3(H,-H3) HiH, (Hy-H))
H) = - 2
(vl CHY (H,-Hj) - Hf (H;-Hj) + H3 (Hy-Hp) - 2
therefore )
Yi
y(H) = (12 H 1] [v]]y2]. 3)
Y3

For a given set of points, as shown on the following page, a
parabolic function is used to the left of point 1 and between
points 1 and 2. Also, a parabolic function is used to the right
of the last point n and between point n-1 and n. Diparabolic
functions are used between all other points.
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Y 1'1..\ i+1
2 1i-2 o N \R1 ) n-2 n
3 " e - n-]1
: 1
Bay i-1 Bay
|Bay 1| | i n-1
] x
d—paraboliC—b'( ' diparabolic *parabolic—»
Bay 1 (and to the left of point 1)
Bay 1
™,
y
X
The coordinate Yi at x, is found as follows:
From Equation (la),
Hk = (xk - xl)/(xz - xl) (43)
Hy = (x; - x1)/(x; - %) =0
HZ = (XZ - Xl)/(Xz - Xl) =1
Hy = (x3 - x3)/(x; = x3) = D, (4b)

Using these expressions with Equations (2) and (3), the final
result is obtained as

1/D 1/a-p)  -1/p-»)} [y,
y(H) = ¥ = l“i H 1, -+0)/p  -p/(1-p)  1/p-p)}] v | (e

1 0 0 A
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The following table gives the correlation between the nomenclature
of Equations (4a, b, c¢) and that used in the Fortran coding in the
subroutine.

Equations (4a,b,c) Fortran Coding*
X XA (m) m=1, 2, 3
Ym YA(m) * m=1, 2, 3
Hk H
X XZ (K)
Yi YZ(K) *

*Subscript j, denoting different sets of
points, has been omitted for clarity.

Interior Bay i-1

. ) i+1
Bay i-1
y | y "4"
Parabola A 17} - -~ -~
~ A&¥
‘}'k = —— — —_——~ Parabola B
|
l x

The coordinate Y at X is found as follows. A diparabolic func-

tion in bay i-1 of the above sketch is obtained as the weighted
average of parabolas, A and B. That is,

y(H) = (1-H) « y, + H * yg (5)
where
X - X
= ——id (6a)
R S |

as in either Equations (la) or (1b).
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For parabola A:
B2 = (R4-2 = %-1) /(% = %) = © (6b)
Hior = (-1 = %) /(% 7 %eg) = 0
T R Y R IR

From Equations (2) and (3),

Yi-2
y,(8) = [H2 H 1] [wA] Yiq

Yi

: -1/C(1-C) 1/c 1/(1-C)
[*A] ~ | 1/caa-c) -@a+c)/c  -c/@a-c)

0 1 0

where

For parabola B:

-1 7 (-1 7 Me1) /(% 7 ¥ge1) 7O
Sl I T VR T B
e ™ (fge1 ™ %ma) /(% 7 %peq) B0 (6c)

From Equations (2) and (3)

Yi-1
) = (8 11 [yl fy,

i?1+1

1/p 1/(1-p)  -1/D(1-D)
’wni = |-Q+)/D  -D/(1-D)  1/D(1-D)

1 0 0

where
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Substituting these expressions for Ya and Vg into Equation (5)

and evaluating at point k results in

where

vl =

Yi-2
- - 3 2
RN LA SN U P
Yi
Yi+t1
1 C-D D-C -1
c(1-C) ch (1-C) (1-D) D(1-D)
-2 2D~C l1-2D+ C 1
c(1-C) cb (1-C)(1-D) D(1-D)
1 -(1+C) -C 0
c(1-C) C 1-C
0 1 0 0

L

(6d)

The following:table gives the correlation between the nomenclature
of Equations (6a, b, ¢, d) and that used in the Fortran coding
in the subroutine.

Equations (6a,b,c,d)

—
Fortran Coding¥*

x1-m

yi-m

Yk

XA (I-m)
YA(I-m) *
H

XZ (K)

YZ (K) *

*Subscript j, denoting different sets of
points, has been omitted for clarity.

m=2,1 0, -1

=)
]

2,1, 0, -1
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Bay n-1 (and to the right of point n)

y Bay n-lp
n

x
The coordinate y, at x, is found as follous.
From Equation (1b)
e = (% ™ *n-1)/("a ~ *a-1) (a)
Hom2 ™ (a2 ™ %a-1)/(n ~ Mel) B C (7%)
Bt ™ (*a-1 7 *n-1)/(%n ™ *a-2) = ©
-1

Hn = (xn - xn-l%/1xn - xn--l)

Using these expressions with Equations (2) and (3), tiie final re-
sult is obtained as

-1/C(1-C) 1/c 1/(1-C) Yoo

y(%) = vim [Hm | vea-e -aore ccra-of g | 0o

0 1 0 yn

The following table gives the correlation between the nomen-
clature of Equations (7a, b, ¢) and that used in the Fortran coding
in the subroutine.
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Equations (7a,b,c) Fortran Coding*
X -m XA (NXA-m) m=20, 1, 2
Yoem YA(NXA-m) * m=20, 1, 2
Hk H
% XZ(k)
Y YZ (K) *

*Subscript j, denoting different sets of
points, has been omitted for clarity.

Consider the following two sets of points denot-d by (1) and

-

(1)

s ‘._,,.———T--"

. - 4

20 30 40 50 60 70 80" 90 100 110

-2r 10

(2)

The coordinates of the points are given by

10. 1. -1.
20. 2. -2.
{XA} =} 50. and [YA] =] 3. -6.1.
70. 9. -2,
}IOJ LS' 2.4

{XA} gives the x cuordinates of the points in both sets (1) and
(2). Column 1} of [YA] gives the y coordinates of the points in
set (1) and column (2) of [YA) gives the y coordinates cf the

points in set (2). The y values are wanted at x = 5., x = 100.,
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and x = 65., that is, at

5.
(xz}; = {100.
65.
At x = 5., extrapclated values of y = 0.375 and y = -0.5625 are

calculated from columns 1} and 2 of [YA}, respectively, usiag rows
1, 2, and 3 of {XA) and [YA]. At x = 100., interpclated values

of y = 8. and y = 1.5 are calculated from columns 1 and 2 of [YA],
respectively, using rows 3, 4, and 5 of {XA! and [YA]. At x = 65.,
interpolated values of y = 7.775 and y = -3.03125 are calculated
from columns 1 and 2 of [YA}, respectively, using rows 2, 3, 4,

and 5 of {XA} and {YA]. The result is

0.375 =0.5625
fyz] =18. 1.5
7.775 -3.03125
To relate this example problem io a practical problem, con-
sider {XA} to be the collocation points (panel points) of a vehicle
and [YA] to be the modal displacements for two modes. Gyros are

to be placed at statioms x = 5., 100., and 65. (i.e., {XZ}). The
modal displace ents ([YZ]) are to be found at these stations.

REFERENCE

Griffin, J.A.: "A Diparabolic Method of Four-Point Interpola-
tion." Jowrnal of the Aeronauticul Seiences, Vol. 28, No. 2,
Readers' Forum, February 1961.



Subroutine TRAE2 calculates time response additional equatiocns.

That 1is

{2(t)} = [A] (X(t)} + [B] {X(t)} + {C] 1X(t)} + [D] {F(t)} + (E}

where {X(t)}, {X(t)}, {X(t)}, and {F(t)} are the time response
and force previously calculated in a time response subroutine, for
example TRSPi. The TRSPl tape is read in the subroutine TRAE2 to
calculate {Z(t)}. The coefficient matrices [A}, (Bl, [cC], (D],
and {E} are supplied or omitted, on option, to this subroutine to
calculate {Z(t)} which may be shear, bending moment, displacement,
etc, depending on the choice of coefficient matrices.

TRAE2

(1)



TRANS

Subroutine TRANS calculates the transpose (interchange of rows
and columns) of a matrix. If lA]NRAxNCA is the matrix to be trans-

posed, then the result is

where

i = 1, NRA
(j 1, NCA

NRA is the number of rows of [A], and NCA is the number of columns
of [A].

Theorem: The transpose of the product of a set of matrices is
equal to the product of the transposed matrices taken in
reverse order, That is,

carsien’® = e 1" (a)t.

Theorem: The transpose of the sum of a set of matrices is equal
to the sum of the transposed matrices. That is,

(ta) + 8) + ehT = a1+ 81T + 1%
EXAMPLE

If the input matrix is

[A]2x3 =11. 2. 3.

4. 5. 6.
then
T
(213, = (Alys =1 4
2. 5.
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Subroutine TRSP1l solves the second order differemtial equation
[A] {X(D)} + {B] iX(t)} + (€] (X(t)! = (D] ¢¥(e)- (1)

for
{i(t)}, {i(c)}, and {X(t):

using a fourth order Runge-Kutta numerical integration procedure
(Ref 1). Matrices [A), [B}, [C], and [D} are input directly to
this subroutine. For a structural problem, [A] is the mass
matrix, [B] is the damping matrix, [C] is the stifiness matrix,
and [D] is the transpose of the vibration mode shapzs if the
equations are a modal representation of the structure. The force
{F(t)} is calculated internally in the subroutine using linear
interpolation with [TABT] and [TABF] which are beth input to the
subroutine. As an illustration of the use of [TABT] and [TABF]
consider the following example.

F

2.0 .

- t
0 5 10 15 20

The table (A table is defined in this report as a matrix that may
have incomplete column data in some rows.) giving the independent
variable coordinate t is
[TABT} = JOo. 20.
5. 10. 15.

The table giving the corresponding coordinates of the dependent
variable F is

(TABF] = | 2. 2.
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The following values for {F(t)} will be obtained by linear inter-
polation at t = 7.

iF(t = 7))} =1]2.

.7

The Runge-Kutta method of numerical integratioa has several
desirable features that may be summarized as follows. The method
is generally considered to have good convergence qualities.
Forward integration and iteration procedures can sometimes be
unstable so that a calculated solution oscillates with rapidly
increasing amplitude about the truve solution. The Runge-Kutta
method does not seem to be so susceptible to this difficuley.

DESCRIPTION OF TECHNIQUE

Matrix [A] must be nonsingular because the highest derivative
will be calculated from modification of Equation (1}.

(X(t)} = [a)"} (D] {FCE)} - (A}™) [B] X(t)} - [A]™! [€) :X(&)s  (la)

Runge-Kutta numerical integration is then used to itegrate {X(t)}
to obtain {X(t)} and then again used to integrate {X(t): to obtain

{x(e)}.
REFERENCES
1. S. Gill: "A Process for the Step-by-Step Integration of Dif-

ferential Equations in an Automatic Digital Computing Machine,"
Proceedings Cambridge Philosophical Society 47:96-108 (1951).



TRSP1A--1/3

Subroutine TRSP1A solves the second order differential equation
(A} {X(t)} + [B) (X(r)} + [C] iX(e)! = (D) tF(e): (1)

for
(X(e)}, X(t)}, and {X()}

using a fourth order Runge-Kutta numerical integration procedure
(Ref 1). Matrices [A], [B], [C], and [D] are input directl to
this subroutine. For a structural problem, [A] is the mass
matrix, [B] is the damping matrix, [C] is the stiffness matrix,
and [D] is the transpose of the vibration mode shapes if the
equations are a modal representation of the structure. The force
{F(t)} is calculated internally in the subroutine as follows.

{F(t)} is size (NFxl) and is obtained considering a (1 - cos)/2
variation in the coordinate force. Consider the following ex-
amples.

EXAMPLE 1:

Missile Penetrating a Stationary Gust at the Rate - VEL -

- GL —-»>
FMAG. VEL
) Y 1 -
5(1 ~ cos 2rd
GL e d 1
2 —
T \mc;, FMAG, , A
1.0 T, 1
l N9 _~
, . 1 ‘ >
AR N
P
PPy 23 PPy panel point
‘\\‘\u coordinates(PP)
(opposite
direction
from VEL)

Note that the ratio GL/VEL is the period
of the gust.
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1f I.-‘MAG:l {8 defined to be the maximum normal force at station
(1), then the iCh normal force F(t) varies with time as -

20 d
i
- l - ~ ~
Fi(t) FMAGi ) (l cos oL ) for 0 d1 GL

d, ~ 0,
Pi(t) -0 for
GL = d,

vhere, d 6 =d, - ( e, - ppl) and

d1 = VEL*(t - STARTT).

(assumes PP} is at beginning of gust at t = STARIT.)

EXAMPLE 2:

In the event a sudden envelopment forcing function (zero lag
time for all stations) is desired, two alternatives exist:

1) Supply FMAG and PP as scalar quantities and PPl = PP.

This sets the lag time to zero, ( PP, - PP, = 0); or
2) Supply FMAG as a vector and PP as a vector with all
stations the same and equal to PPl. This sets the

lag time at all stations to zero.

The Runge-Kutta method of numerical integration has several
daesirable features that may be summarized as follows. The methed
is generally considered to have good convergence qualities. For-
ward integration and iteration procedures can sometimes be unstable
g0 that a calculated solution oscillates with rapidiy increasing
amplitude sbout the true solution. The Runge-Kutta method does
not seem to e 80 susceptible to this difficulty.
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DESCRIPTION OF TECHNIQUE

Matrix [A) must be nonsingular because the highLest derivative
will be calculated from modification of Equation (l).

(X(t)} = [A)! [D) {F(t)} - [A]7} [B] (X(t)} - [A)™} [C] (X(t)}. (la)
Runge-Kutta numerical integration is then used to integrate

{X(t)} to obtain {X(t)} and then again used to integrate !{X(t)}

to obtain {X(t)}.

REFERENCES

1. S. Gill: “A Process for the Step-by-Step Integration of Dif-
ferential Equations in an Automatic Digital Computing Macbine."
Proceedings Cambridge Philosophical Society 47.96-108 (1551).
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Subroutine TRSP1B is a modification of Subroutine TRSP1l to use one
less matrix space so that larger size matrices can be used. the
second order differential equation to be solved is

(X(0)} + [B] {X(8)} + [C] (X(t)} = (D] {F(D)). (1)

Comparing this equation with Equation (1) of Subroutine TRSP1l shows
that

IRSPLB

[B) is [a]™! [B],
[c] is [A]7! [c],
[p] is [A]~! [D1.

All other comments in the explanation of Subroutine TRSPl apply to
this subroutine.
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i

Subroutine TRSPIC is a modification of Subroutine TRSP1lA to use
one less matrix space so that larger size matrices can be used.
The second order differential equation to be soulved is
{X(t)} + (B} {X(t)} + [C] {X(c)} = [D] {(F(t)}. (1)

Comparing this equation witl, Equation (1) of subroutine TRSP1lA
shows that

IRSPIC

(8] is [a)™! [B],
fc) is [A)7} [c],
(D] is {A]"! [D].

All other comments in the explanation of subroutine TRSP1A apply to
this subroutine.
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Subroutine TRSP2 sulves the second order differential equation

[A] 1X(£)} + [B] {X(e)} + [C] {X(L)) = {D]) t¥(e)! )

for {X(t)}, {X(t)}, and {X(t)} using a third order Newmark-Chan-~
Beta numerical integration procedure (Ref 1). Matrices {[A}, [B},
[C), and [D) are input directly to this subroutine. For a struc-
tural problem, [A] is the mass matrix, [B] is the damping matrix,
[C] is the stiffi.ess matrix, and [D]) is the transpose of the vi-
bration mode shapes if the equations are a modal representation
of the structure. The force {F(t)} is calculated internally in
the subroutine using linear interpolation with [TABT] and [TABF]
which are both input to the subroutine. As an illustration of
the use of [TABT] and [TABF) consider the following example.

F
2.0 Py
= 4
0 5 10 15 . 20
F,
1.0 /\
.5
0 5 10 15 20

The table (A table is defined in this report as a matrix that may
have incomplete column data in some rows.) giving the independent
variable coordinate t is
{TABT] = | O. 20,
5. 10. 15.

The rable giving the corresponding coordinates of the dependent
variable F is

[TABF] = |2, 2.

5 L. .51,
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The following values for {F(L)} will be obtained by linear in-
texrpolation at t = 7.

{F(t = 7)}

L}
A=)

DESCRIPTION OF TECHNIQUE

Because the difference equation contains displ .cement terms
for three consecutive time intervals, it is required to express
a displacement quantity in terms of initial velocity and initial
displacement in order to start the procedure. Because [A]) must
be nonsingular in this method, it was decided to modify Equation
(1) into the form

(X(£)) + [A]7) [B] (X(£)} + [A)™! [C] (X(r)} = (A]™} [D] (F(t)i.

Thus, only three matrices are needed compared to fcur matrices
in Equation (1). The starting equation is thus given as:

(X}, = [s~! P) {X¢} + [S™! Q) Xy} + gh- [s™! A™! D) (Fi, + [$™% R A™} D] {F},

where

[P} = (1] +2 (a1 B) = (4 - ) 02 (a7} C)
- (% - 8) h® [a~! B] [a-! ]

{Q) = h (I) - (4 - &) h3 [a~! B] [4~! B]

[R] = () - 6) h? [1] + (4 - 3) h3 [A”! B)

[s] = [1) + 3 [A-) B) + sh? (7} C].

(I] 1s a diagonal of ones (unity matrix)
h is the integration step size (at).

After obtaining {X},, the following difference equation is used
to obtain the rest of the values of {X}.
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= [g~] ~ (s~ uy
(X} g = [s7hT) X}, - [S70 U)X}y

+ 8h? [s7! 47! D] ({Fi+1} + (% - 2 (F}, + {Fl_l})
where

[T} = 2 [1] - (1 - 28) h% [A7! c].
[ul = [1) -% (A= B] + 8h? [A™1 C].

The acceleration and velocity are then obtained using the following
difference equations.

..- - _ _ . _ o 2 . ,
{x:i+l ({xn-ﬂ {x}jL h{x}i % -8)h {x}i)/bh2

: _ . h e ll- .
{X‘}iﬂ = {xi} +3 {x}i + 3 {x}iﬂ

Beta (B) is the parameter of generalized acceleration and can
be anywhere between 0 and 4.

REF ZRENCES

l. Chan, S. P., Cox, H. L, and Benfield, W. A.: '"Transient
Analysis of Forced Vibrations of Complex Structural-Mechanical

Systems." Journal of the Royal Aeronautical Society, July
1962.
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Subroutine TRSP2A solves the second order differential equatiou
[A] tx(e)} + [B} {X(t)} + [C]) {X(u)} = [D} i¥(u)!} (N

for {X(t)}, {X(t)}, and {X{(t)! using a third order Newwmara-Chan-
Beta numerical integration procedure (Ref l). Matrices [A], [B],
[C], and [D] are input directly to this subroutine. For a stru -
tural problem, [A] is the mass matrix, [B] is the damping matrix,
[C] is the stiffness matrix, and [D} '3 the transpose of the vi-
bration mode shapes if the equations are a modal representation

of the structure. The force {F(t)} is calculated internally in
the subroucine as follows.

{(F(t)} is size (NFxl) and is obtained consideriug a (1 - cos)/2
variation in the coordinate force. Consider the following €x-
amples.

EXAMPLE 1:

Miésile Penetrating a Stationary Gust at the Rate - VEL -

PMAG, VEL

2%d
&(1 - cos Gr

[y
r‘__1°——_‘1

-—

panel point
coordinates(PP)
(opposite
direction

from VEL)

PPy PPy PPy

";“G:_‘ FMAG, 4 4

d

A < -
TN

Sote that the ratio GL/VEL is-the period
of the gust.
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If FMAG, is defined to be the maximum normal force at station

i
(1), then the ith normal force F(t) varies with time as -
2n d )
Fi\t) - FHAGi Gs) 11 - cos GL for G - d1 < GL
di <0,
Fi(t) = 0 for
GL < di

where, d, =d, - ( PP - PPl) and

dl = VEL»(t - STARTT).

Assumes PPy is at beginning of gust at t = STARTT.

EXAMPLE 2:

In the event a sudden envelopment forcing function (zero lag
time for all stations) is desired, two alternatives exist:

1) Supply FMAG and PP as scalar quantities and PP1 = PP,

This sets the lag time to zero, ( PP, - PP = 0); or

2) Supply FMAG as a vector and PP as a vector with all
stations the same and equal to PPl. This sets the

lag time at all stations to zero.
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DESCRIPTION OF TECHNIQUE

Because the difference equation contains displacement terms
for three ccnsecutive time intervals, it is required tc express
a displacement quantity in terms of initial velocity and initial
displacement in order to start the procedure. Because [A] must
be nonsingular in this wmethod, it was decided to modify Equation
(1) into the form

{i(t)} + [A]"! [B) {i(t)} + [A)7! (c) (X(r)} = [A]7! (D) (F(e)}.

Thus, only three matrices are needed compared to four matrices
in Equation (1). The starting equation is thus given as:

(X}, = [S"! P] {Xg} + (57! Q] (Xo} + ¢h¢ ([s7} A7} D) F}, + (ST} R AT! D) {Fiy

where

[P] = (1] + 2 ("' B) = (5 - ) b (a7} )
- (% - 8) h3 (a1 B} (A~ ()

{Q) = h [1] - (% - 8) k3 [A™! B] [A™! B]

[R} = () - 8) h2 [I] + (5 - 8) h3 (a~! B)

is] = (1] + 2 (o™} B] + 3n? [a7! C)

[I] 18 a diagonal of ones (unity matrix)
h is the integration step size (it)

After obtaining (X};, the following difference equation is used
to obtain the rest of the values of {X}.

{x} 1" [s~! T) {x}i - {s7! u} (x}

i+ 1-1
st (67 a0 (g + (- ) e gr, )
wvhere

{T] = 2 [1} - (1 - 28) n? (A~} C].

(Ul = (1) - 3 (a7 B + 802 {a~! C].



TRSP2A--4/4

The acceleration and velocity are then obtained using the following
difference equations.

. ) e
{x}iﬂ-({xiﬂ} (X}, - h (X}, - (.- 8) h .x}i) /th

i _ . .
X =X 72 &y +3 &y

Beta (8) is the parameter of generaiized acceleration and can
be anywhere between 0 and X%.

REFERENCES

1. Chan, S. P., Cox, H. L, and Benfield, W. A.: "Transient
Analysis of Forced Vibrations of Complex Structural-Mechanical

Systems." Journal of the Royal Aercnautical Society, July
1962.
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Subroutine TR3 solves the second order differential equation
LAd X))+ B8] X@i+[clix@®! =[] (FW) )

for {X(t)}, {X(t)}, and {X(t)} in closed form. The results are
used to solve the matrix equation

{z(t)} = [AA} {X(t)} + (BB} {X(r))
+ (cc] {X(t)} + [(DD] (F(t)} + {EE} (2)

that may be used to determine dynamic loads or displacements. The
coefficient matrices [AA], etc are supplied or omitted on option.

For a structural problem, [ A ] is the generalized mass, [ B ]
is the generalized damping, [ C ]} is the generalized stiffness,
and {D] is the transpose of the vibration mode shapes. Matrices
LA)], I B}, and [ C ] are of uncoupled form. The force {F(t)}
is calculated internally in the subroutine using linear interpola-
tion with [TABT) and [TABF] which are both input to the subroutine.
As an illustration of the use of [TABT} and [TABF] consider the
following example.

2.0 ®

- t

; >
0 5 10 15 20

The table (A table is defined in this report as a matrix which
rmay have incomplete column data in some rows.) giving the inde-
pendent variable coordinate t is

[TABT] = [o. 20. ]
s. 10. 15.4,
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The table giving the corresponding coordinates of the dependent

variable F 18
(TABF] = [2. 2.
.5 1. .5},

The following values for {F(t)} will be obtained by linear inter-

polation at & = 7.
2.
7).

The matrixes [AA], [BB], (cC], (DD}, and {EE}! are input, on
option, to calculate {Z(t)} which may be shear, bending moment,
displacement, etc, depending on the choice of coefficient matrices.

]

{F(e = 7)}

DESCRIPTION OF TECHNIQUE

Equation (1) may be considered as a set of single degree of
freedom equations because the mass, damping, and stiffness matrices
are of uncoupled form. Thus the equaticn to consider is
mx(t) + cx(t) + kx(t) = £(v) (3)
where
f(t) is a row of [D] {F(¢)}.

Equation (3) is solved by using Laplace transformations.

o

In general, £ [g(t)] = G(s) = S e 5" g(tr) at. (4)
0

L [x(t)] = X(s) (4a)

£ [x(t)] = 8X(s) - x(0) (4b)

£(x(t)] = 82X(8) - 8x(0) - (0) (4¢)

L[f(t)] = F(s). (4d)
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Using the above Laplace transforms with Equation (3) gives

X(s) = F(s) (s + 2a) x(0) + x(0) (5)
m[(s + a)< + b<] (8 + a)? + b~ (s + a)~ + b~
where
a= %; (5a)
ok _ c? . (5b)
v m  4m?

The time response x(t) is then found by taking the inverse Laplace
transformation of Equation (5). This can be done conveniently by
solving each term of the equation separately. Because the force
may be nonzero at the start time, and because the force is as-
sumed to vary linearly, the forcing function is broken down into

a step force and a ramp force. Thus, the response is obtained

as the sum of four separate solutions. That is,

x(t) = x(t) due to initial displacemen:
+ x(t) due to initial velocity
+ x(t) due to step force

+ x(t) due to ramp force.

In the solution of Equation (5), we will also define w =<J k .

m
Terms such as sin (bt + y) will use a trigonometic expansion to
avoiu inaccuracy of combining y with large values of bt. For
example,

if

- ~1 -9-
¥ tan a

then
sin (bt +y) = % (a sin bt + b cos bt).
The response due to initial displacement, initial velocity,

a step force, and a ramp force are summarized below. These re-
sults are derived in Reference 1.
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l, Initial Displacement, x(0)

x(t) = xéO) e 3% (a sin bt + b cos bt)
x(t) = :E%Ql w? e73% sin be
x(t) = xéO) w? e 2t (a sin bt - b cos bt)

For the special case ¢ = k = 0 (i.e., a = b = 0), the above
equations give no solution. For this case,

x(t) = x(0)
x(t) = 0
;(t) =0

2. Initial Velocity, x(0)

- x(t) Eégl e at sin bt

x(0)

b e-at (-a sin bt + b cos bt)

x(t)

x(t) xéO) e 2t [(a® - b') sin bt - 2ab cos bt]

i}

For the special case ¢ = k = 0, (i.e., a = b = 0), the above
equations give no solution. For this case,

x(t) = %(0) t
x(t) = %x(0)
x(t) = 0
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3. Step Force -

f(cs)

F
8
- t
>ty ® t- t”(start)
E(start)
FS e-ats
x(ts) == |l-=3 (a sin bt_ + b cos bts)
Fs —at5
x(ts) *m ¢ sin bts

n
|

- Fs -ats
x(t ) e -a sin bt + b cos bt
s mb s s

For the special case ¢ = k = 0 (i.e., a = b = 0), the above
equations give no solution. For this case,

"y

L S -
= 2 —— t‘—
x(ts) ‘m s
FS
&(t ) = —t
S m S
F

L
—
[ad
w
——
n
o
®
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4. Ramp Force

()

/ope =T
- t

I'_'—’tr =t- t"(start)

t(start)
o ~-at
r
- 1 1 (_ e 2 _ B .
x(tt) s Ltr + = (Za + 5 {(a b<) sin bt;r + 2ab cos btt})]

i(tr) = m—:z 1 -8 = (a sin bt_+ b cos bcr)]

;(tr) -‘i £ Y - sin btr

For the special case c = k = 0 (i.e., a = b = 0), the above
equations give ao golution. For this case,

x (e, ) =l
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REFERENCES

1. Wohlen, R. L., and Benfield, W. A.: C(losed Form Svlution of
the Second Order Differential Equation, Martin Marietta Corpo-

ration, Denver Division, Dynamics Section, Memo 108, January
1967. '
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Subroutine UMAM]1 calculates a matrix that relates inertia
plus applied loads to applied loads for an inertially restrained
(free-free) system.

A physical interpretation of this transformation matrix may
be obtained from the following beam with a single degree of free-
dom (translation) at each panel point.

X

The inertia forces are defined by
*FI} a - [A] {z} (1)

where [A] is the mass matrix of the beam and {z} is the panel
point acceleration. -

The panel point accelerations are given by

.. ;s
{z} = [{l} {xR - xd é (2)

where Xp denotes a reference station that may have any value and

may or may not coincide with a panel point station.

Let us define
[RBM] = [{1} {xg - x}], (3)

that is, the rigid body modes for the beam. The rigid body trans-
lation mode 1is given by {1} and the rigid body rotation mode is
given by ’xR - x}. Substituting Equations (2) and (3) into (1)

gives .
R
{F1} = - [A] [RBM]} .. (4)
6 J.



For loads equilibrium, the sum of the forces and the moments
about a reference station must be zero. That is

)t [FA}i-{Fﬂ] =[0]
frg = x}" °

where ’FA} is the applied external force on the beam.

From Equation (5), noting that

(1)t

= [rem)T,
T
{¥*r = *{
T T
- [RBM] {FI} = [REM] {FA&_
Substituting Equation {4) into (6)

(reM)T [a] [reM] | z.| = [rBM)T {F,)

R
:

from which

) = LiremgT [a) revy| ™ (mE)® ir

R {Fat.

(%)
Substituting Equation (7) inte (4) gives the ineriia loads in
terms of the applied loads as

{FI§ = - [A] [MESS] {FAi

where we have defined

(ess) = (reM] [(rew)® [a) (rev)])” (maw)T.

UMAM1--2/4

(3

(6)

(7)

(8)

(9)
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Now the applied plus inertia lrads can be expressed as

{Fab * {1

{Fo} = [A] [MESS] {F,|

(1) - [A) [MESS] {F,}

[[1] - [A] [MEssﬂ is the matrix relating the applied plus inertia

loads to the applied loads output from the subroutine. It can be
shown that L[I] - [A] [MESS]] is independent of the reference

station xR.

Any number of rigid body modes may be used; however, this sub-
routine is limited to six.

Several important features of [[I] - [A] [MESS]] exist. The
first deals with the triple matrix product

[[1] N [MESS]]T [ER] [[1] - [A] [Mgssﬂ

where [EP] is the structural influence coefficient matrix of a

structure restrained in a statically determinant fashion. The
result of the operation is a free~free structural influence co-
efficient matrix where the grounding restraints of the structure
have been removed. It is somewhat helpful to think that the
grounding restraints of the structure have been replaced by in-
ertial restraints. A second important feature is that the product

[EF] [KF] - [[1] - [a) [MESSﬂ

where [EF] is the free-free structural influence coefficient and

[KF] 18 the free-free structural stiffness matrix.

An interesting property of [[I] - {A] [MESSﬂ is that it is an

idempotent matrix, that is, a matrix whose produce with itself is
equal to itself. This can be easily shown as follows.

(10)
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[[1] - [A] [MESS]] [[1] - (4] [MESS]]

= [I] - [A) [MESS] - [A] [MESS] + [A] [MESs] [A) [MESsS],

Now

[A) [MESS] [A] [MESS]
= [A] [REM] [[RBM]T [A] [RBM]] " re)® (a] [RBA)

-1 .
[[RBM]T (Al [RBM]] (REM]

-1
(a] (xev) [ (rem)” (4] (reM)]” (Raw)T

iA] [MESS],

-~ [[I] - [A] [MESS]] [[I] - {A] [MESSﬂ = [1] - [A] [MFESS].
This technique was formulated by David l.epg at Chance Vought

Aircraft in an informal memorandum in 1959 and erpanded upon by
myself and Carl Bodley in 1960.



Subroutine UNTTY generates a square matrix with diagonal cile-
ment equal to one and all off-diagonal elements equal to zero.

That is,

z 1.

ij
z..
1]
In matrix notation,

[Z]NxN =11.

where N is the size of [Z] (square’.

matrix is the identity matrix, thus

(i =1

i4 3

1.

A synonym for the uaity
the usual designation as [1].

A matrix is unaltered when multiplied by the unity matrix and
the process is commutative. In matrix nctation,

fall1] = [1]{A] =

{al.

UNITY



UPDATE

Subroutine "'PDATE transfers data written by Subroutines WTAPE and
YWTAPE from on. or more FORMA tapes onto another (new or existing) FORMA
tape*., 1t also provides an option to unload and return the read-tapes and
drives to the system upon completion of updating from them.

The selection of matrices to be updated from one tape to the other,
is accomplished by specifying the matrix location number (see Subroutine
WIAPE writeup) limits. These limits can include only one matrix, several
(consecutive) matrices, or all the matrices (i.e., the whole tape).

*Because Subroutine UPDATE both reads and writes on the "write" tape, and
because most computer tape drives Jo not have sufficient tolerance control

for a mixed mode (i.e., read/write) operation, the "write'" tape should

initially be a disk file. After the update, the disk file may be copied
onto a tape.
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Subroutine VCROSS calcuiates the cross product of two vectors
in threc-dimensional space. By definition, the cross product of

-> -+ ->
two vectors A and B is a vector Z whose magnitude is the product

of the magnitudes of A and B with the sine of the angle between
their positive directioas; that is,

IEI = iKI ]ﬁ[ sin (K, B).
The direction of Z is perpendicular to the plane determined by

> -> > > -
A and B and so sensed that the configuration of A, B, Z consti-
tutes a right-hand csvstem (providing the reference axes them-
selves are a right-hand system).
-> >
In terms of the components of A and B we have,

z. =a, b, -a.b

1 2 73 3 72
22 = a3 b1 - al b3
2y = a) by - a, by

which is the expanded form of the determinant

1 %2 %3
al 32 33
by by baf

If K x E = 0, then either at least one of the vectors (K, E)
is zero or A and B are parallel.



VCROSS--2/2

The cross product can be represented in matrix notation as

AxB 0
X = -
a3 a2 bl
a3 0 —al b2
-a, a, 0 b3

Note that the first matrix is skew-symmetric.

Theorem: Cross multiplication is distributive. That is,
> -» -> - >
A< (B+C)=4AxB+AxC.

Theorem: Cross multiplication is not commutative and is some-
times called anti-commutative since

-

- <> ->
A x B =-B x A,
EXAMPLE

If the input is A = [-3., 5., 2.] and B = [4., 1., -6.],
then the output will be

= | -32.
-10.
[ -23.

|| J(—3-)2 +5.24 2.2 = 6.1644

(B {4.2 +1.2+ (602 = 7.2801

N
]

J(-az.)2 + (<10.)° + (<23.)° = 40.6571

sin (&, B) = —:l%— = .90596
|A]|B]



VDOT--1/2

Subroutine VDOT calculates the dot product of two vectors in
three-dimensional space. The dot product is also called the
scalar product or inert product. By defirition, the dot product

> ->
of two vectors A and B is a scalar equal to the product of the
magnitude of each vector and the cosine of the angle between
their positive directions; that is,

= !K] lﬁl cos (K, ﬁ)_

-2

>
A -

-> -
In terms of the components of A and B, we have

A-B b b. +a. b
a; by +a; by +a5 b,

If A - B = 0, then either at least one of the vectors (Z, ﬁ) is

- >
zero or A and B are perpendicular.

The dot product can be represented in matrix notation as

e
.
=]
1]
—~—
e
——
[+
et

It
m~
[Y
—
[
(28]
[
(98]
et
o
[

Theorem: Dot multiplication is distributive. That is,
-» -> -» > - -> >
A+ (B+C)=A-+B+A-C

Theorem: Dot multiplication is commutative. That is,

- > > ->
A-B=3B-+A
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EXAMPLE

1f the input is A= [-3., 5., 2.] and B = f4., 1., -6.],
then the output will be

-

£+B=1[-3. 5 2.1F[a.
5]
-6.

= -19,.
> 2?2 .
lal = J(-a.)2 +5.242.2 = 6.1644
> 2 2
Bl = 4.9+ 1.7+ (-6.)° = 7.2801
> A-3B
cos (A, B) = = -,42337




VM1--1/2

Subroutine VMl integrates pressure or weight distribution
along with concentrated forces or weights to obtain shears and
bending moments at a set of selected points on a beam. The pres-
sure or weight distribution and the concentrated forces or weights
are multiplied by an amplification function (ncrmally the accel-
eration).

The x-stations of the selected points are given in {XVEC}.
These x-stations must be in increasing order.

The distributed pressure, p(x), is assumed to be piecewise

linear and is represented by straight line segments as shown in
Figure 1.

/ *

————0o0

Figure 1 Distributed Pressure

The x-stations of the end points for the line segments giving the
distributed pressure are independent of the x-stations in {XVEC}.
The line segments representing the distributed pressure may or

may not be joined but must not overlap. On any interval where the
distributed pressure is not defined, the pressure is assumed to

be zero. The distributed pressure is defined in [DIS]. Each row
of [DIS] represents one nonvertical line segment. The form of
each row of [DIS] 1s [x; x, p; py)] where x;, p; give the first end
point and x;, p; give the second end point of a line segment. The
line segments given by [DIS] must be in increasing order of x.

The distributed welpght may also be given by ([DIS].

The amplification function is also assumed to be represented
by straight line segments. All statements given above for dis-
tributed pressure are applicable. The distributed amplification
function is defined in [AMP].



VM1--2/2

The concentrated mass items are defined in [CONC}. Each row
of [CONC] represents one concentrated mass item and contains:

1)

2)

3)

These four

attachment

xa, the station at which the item is aztached to the
beam;

Mc, the mass of the item;

x , the center of gravity of the item; and

cg
c . . . .
Icg, the moment of inertia of the item about its own
center of gravity.
. cg
elements are given in th~ form |x M x I . The
a ¢ cg ¢

station, x , vi an item to the beam must be within the

panel point limits.

The calculated shears and bending moments at the selected
points are placed in {ZV} and {ZM}, respectively.



VMIR1--1/2

Subroutine VMTR1 calculates a matrix [Z] that can be used to
obtain internal shears and bending moments of a beam in terms of
external forces and moments acting on the beam. 7The internal
shears and bending moments, as well as the external forces and
moments, are at specific locations on the beam. These locations
are specified by the elements of {PP} which is input to the sub-
routine.

EXAMPLE

Consider the beam below with external forces Pi and moments
T, acting at the specified locations.

i
P Py P3
-10 20 40
The locations of the external load application points is given by
{pP} = |-10.
20.

AO.J.

The internal shears (V) and bending moments (M) at the locations
specified by {PP} can be obtained in terms of the external loads
by the following equations:

v, =ZP1. L)

3
i=1

b
Mj=2(xj-xi) Pi+ZTi. (2

i=1



VMIR1--2/2

These equations can be expressed in matrix form for the example
beam as

v, 1. : Py
L}

v, 1. 1. E P,
1

Vs 1. 1. 1.4 Py

I 1 [V 'L ............ - —e

M, 0. 'L T,
]

M, 30. 0. V1. 1. T,
]
'

M3 | 50.  20. 0.1 1. 1. 1. |Ty]

where [Z] is the matrix output from this subroutine.



WRITE

Subroutine WRITE writes a matrix of real numbers (a Fortran
term for numbers with a decimal point) on paper. A group of up
to ten consecutive elements from a row of the matrix are printed
on each line. If all of the elements of a group are zero, printing
of this line is suppressed. ’

Each matrix printed begins on a new page. On each page of
printout is the page heading given by Subroutine PAGEHD, the name
of the matrix, and the row size and column size of the matrix.

This is followed by the matrix data. On any line of matrix data
the first integer number is the row number of the matrix elements
on that line. The second integer number is the column number of
the matrix element in the first data field. The next group of

real numbers (up to ten) are the values of the matrix elements.
This group of matrix elements is given in consecutive column order.



WRITIM

Subroutine WRITIM writes a matrix of integer numbers on paper.
A group of up to twenty consecutive elements from a row of the
matrix are printed on each line. 1If all of the elements of a
group are zero, printing of this line 1s suppressed.

Each matrix printed begins on a new page. On each page of
printout is the page heading given by Subroutine PAGEHD, the name
of the matrix, and the row size and column size of the marrix.
fhis is followed by the matrix data. On any line of matrix data
the first integer number 1s the row number of the matrix elements
on that line. The second integer number is the column number of
the marrix element in the first data field. The next group of
integer numbers {up to twenty) are the values of the matrix ele-
ments. This group of matrix elements is given in consecutive
column order.



WIAPLE-~1/2

Subroutine WTAPE writes matrix data at the end of existing
written matrix data on a FORMA tape (disk is preferred, see below).
Each set of matrix data consists of two logical records. The first
record contains the matrix heading (tape identification, location
number, run number, matrix name, number of rows of matrix, number
of columns of matrix, date, and the word 'dense"). The second
record consists of the matrix elements.

A schematic representation of the tape (disk) is given by the
following sketch.

Beginning

of

taFe (disk)
1

Hy, | B, | Hy, | E» | ... H E_ | 0T j

where

ja <]
[}

1 Matrix heading of the ith written matrix,

2]
fl

1 Matrix elements of the ith written matrix,

2]
Q
=
]

End of Tape. Data written by Subroutine WIAPE or
INTAPE that all FORMA tape subroutines recognize as
being the end of written data.

Each vertical line is an end of iogical record put on by com-
puter system's routines. The tape is written in binary form as
opposed to binary ccded decimal (BCD) form.

To find the end of written matrix data, a search is made of
the matrix headings until the EOT is found. For this reason, a
"new" tape (disk) must be initialized with Subroutine INTAPE so
that the tape (disk) contains an EOT. A 'new' tape (disk) is de-
fined to be a tape (disk) for which it is desired to start writing
matrix data at the front of the tape (disk). Thus, a 'new'" tapc
(disk) could b~ one with obsolete FORMA matrix data on it as well
as one that has never been written on by the FORMA system. When
the EOT is found, a backspace operation i3 done over the EOT, and

then the current matrix heading, current matrix clements, and a
new EOT is written.



WTAPE--2/2

A disk is preferred to a tape for the following reason. Be-
cause of the physical separation of the read and write heads on
most tape drives there may be tape tolerance problems thus vack-
spacing over the EOT is usually not succe2ssful. Instead of ending
up positioned in front of the EOT, the write head is often pesi-
ticned in front of the previous matrix elements (En in the above

sketch). The curren: matrix heading will be written over the pre-
vious matrix elements. This causes problems later when trying to
read the records written on the tape. To alleviate this problem,
it is strongly vrecommended that all FORMA tape subroutines (INT: &,
LTAPE, RTAPE, WTAPE, and UPDATE) use an intermediate device such
as a disk. At the start cf a computer run, the existing tape
should be copied onto the disk by using computer control cards.
Likewise, at the end of the run, the disk should be copied back
onto tape by using computer control cards.



.XLORD

Subroutine XLORD -ontains a sorting procedure used to arrange
matrix element locations into ascending order. The associated
matrix elements are arranged correspondingly. This subroutine
operates only on matrix elements stcred in core  Subroutine
XLORD scans the elements to be sorted and selects one of two pos-
sible methods to be used in sorting. The first method (employed
primarily when the elements are in a random order) is similai to
SORTAG by R. C. Singleton*. The second method (employed when the
elements are breken du.n to two previously ordered groups) is a
merging procedure.

*R. C. Singleton: An Efficient Algorithm for Sorting oith Miniwal
Sturage. Research Memorandim, SRI Project 38753'-132, September
1968.



ZERO

Subroutine ZERO generates a matrix with each element

equal to
zero. That is,
z,, = 0. (i =1, NR)
1ii .
~ j =1, NC

In matrix notation,

(2l yrane =10 ©-
0.
0. .

where NR is the number of rows of [Z], and NC is the number of
columns of |Z].

This subroutine is useful in setting a matrix array to zero
before performing subsequent operations such as matrix assembly
(ASSEM) or revision/addition of one matrix into another (REVADD);.



Subroutine ZEROLH sets the elements below the
square matrix equal to zero. That is,

Eij = 0.
EXAMPLE
If [A] is input to Subroutine ZEROLH as

[A]3x3 = f1. 2. 3.

[A]3x3 =11, 2. 3.

diagonal of a

i > j)

ZEROLH



ZEROUH

Subroutine ZEROUH sets the elements above the diagonal of a
square matrix equal to zero. That is,

aij = 0. (i i)

EXAMPLE

1f [A] is input to Subroutine ZEROUH as

[A]3x3=~1. 2. 13.]

the matrix output from this subroutine will be

[A]3x3 =




ZZBOMB

Subroutine ZZBOMB controls a romputer run after an error mes-~
sage has been encountered in any of the FORMA subroutines. This
entails

1) Printing of subroutine name and error number
where error occurred;

2) Printing of all of the core memory used in
octal form;

3) Program termination.



